Những câu hỏi liên quan
TN
Xem chi tiết
NA
Xem chi tiết
SG
14 tháng 5 2016 lúc 18:22

Dat A=1/3-2/32+3/33-4/34+...+99/399-100/3100

3A=1-2/3+3/32-4/33+...+99/398-100/399

3A+A=1-1/3+1/32-1/33+...+1/398-1/399-100/3100=4A

4A.3=3-1+1/3-1/32+...+1/397-1/398-100/399=12A

4A+12A=3-100/399-1/399-100/3100

16A=3-300/3100-3/3100-100/3100=3-403/3100<3

A<3/16

Chung to...


 

Bình luận (0)
H24
Xem chi tiết
NQ
Xem chi tiết
HH
Xem chi tiết
NQ
Xem chi tiết
TN
Xem chi tiết
H24
22 tháng 4 2016 lúc 20:04

mình chỉ gợi ý thôi, vì viết cái này mỏi tay lắm thông cảm nha

Ở phần ''a'' bạn hãy đổi ra thành:2=2;4=2;.....sau dó bạn CM \(\frac{1}{2^2}<\frac{1}{1.2}.....\) rồi hãy suy ra nhỏ hơn \(\frac{1}{3}\)

còn phần ''b'' bạn hãy tách ra nha 

Bình luận (0)
H24
22 tháng 4 2016 lúc 20:05

à chỗ 2=2;4=2 bạn sửa thành : \(2=2^1;4=2^2\) nhé

Bình luận (0)
LT
Xem chi tiết
XO
21 tháng 7 2019 lúc 8:58

Ta có : 1/2 = 0,5

            2/3 = 0,666...

=> 1/2 + 2/3 + ... + 99/100 = 0,5 + 0,666...+3/4 + ... + 99/100

                                           = 1,1,6666... + 3/4 + ... +99/100 > 1

=> 1/2 + 2/3 + ... + 99/100 > 1

Bình luận (0)
H24

 \(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\le1\)

\(=\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)

 \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\le1\)

\(\Rightarrow1-\frac{1}{100}\le1\)

Bình luận (0)
LH
21 tháng 7 2019 lúc 9:45

1/2 + 2/3 + 3/4 + ... + 99/100 < 1

= 2/2 - 1/2 + 3/3 - 1/3 + 4/4 - 1/4 + ... + 100/100 - 1/100

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100

= 1 - 1/100 < 1 (đpcm)

Bình luận (0)
PN
Xem chi tiết
KZ
31 tháng 3 2016 lúc 17:05

Hình như sai đề thì phải chứ mk làm ko đc !!!

Bình luận (0)

  A < 1/(1.2) + 1/(2.3) + 1/(3.4) + ...+ 1/(99.100) 
<=> A< 1- 1/2 + 1/2 - 1/3 + 1/4 - 1/5 + .. + 1/99 - 1/100 
<=> A < 1 - 1/100 < 1 (đpcm) 

So với  thì đây

Bình luận (0)