Cho các số a,b,c # 0 thỏa mãn hệ thức a+b+c=0
Rút gọn biểu thức p=\(\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ca}{c^2+a^2+b^2}\)
cho các số tự nhiên a,b,c khác 0,sao cho a^b +c,b^c+a,c^a+b đều là các số nguyên tố. Chứng minh rằng 2 trong các số đã cho phải bằng nhau
Cho 3 số a, b, c
lập các số sao cho các số a< b< c
Lập các số có 3 chữ số khác nhau từ các số a, b, c biết tổng 2 số nhỏ nhất là 488. tính a+b+c
Cho các số thực a,b,c thỏa mãn a + b, b + c, c + a đều là các số hữu tỉ. Chứng minh rằng a, b, c là các số hữu tỉ
a + b, b + c, c + a đều là các số hữu tỉ
=> 2(a + b + c) là số hữu tỉ
=> a + b + c là số hữu tỉ (do khi 1 số hữu tỉ chia cho 2 sẽ nhận đc 1 số hữu tỉ)
=> a + b + c - (a + b) = c là số hữu tỉ; a + b + c - (b + c) = a là số hữu tỉ; a + b + c - (c + a) = b là số hữu tỉ
=> a, b, c đều là số hữu tỉ (đpcm)
a, cho các số a,b,c thỏa mãn 3/a+b = 2 /b+c = 1 / c+ (giả thuyết các tỉ số đều có nghĩa ) Tính giá trị biếu thức P = a + b - 2019c/ a + b + 2018c
b, Cho ab,ac ( c khác 0 ) là các số thỏa mãn điều kiện ab/a+b = bc / b+c
\(a,\dfrac{3}{a+b}=\dfrac{2}{b+c}=\dfrac{1}{c+a}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{b+c}{2}=\dfrac{c+a}{1}=\dfrac{2\left(a+b+c\right)}{6}=\dfrac{a+b+c}{3}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{a+b+c}{3}\\ \Rightarrow3\left(a+b+c\right)=3\left(a+b\right)\\ \Rightarrow3\left(a+b\right)+3c=3\left(a+b\right)\\ \Rightarrow3c=0\\ \Rightarrow c=0\)
Vậy \(P=\dfrac{a+b-2019c}{a+b+2018c}=\dfrac{a+b}{a+b}=1\)
Cho các số tự nhiên a , b , c khác 0 , sao cho ab + c,bc + a,ca + b đều là các số nguyên tố . Chứng minh rằng 2 trong các số đã cho phải bằng nhau
Trong ba số tự nhiên a,b,c phải có ít nhất hai số cùng chẵn lẻ .
Giả sử : hai số đó là a và b .
Vì : bc cùng tính chẵn lẻ với b ⇒p=bc+a⇒p=bc+a chẵn
Mà : p là số nguyên tố ⇒p=2⇒b=a=1⇒p=2⇒b=a=1
Khi đó : q=ab+c=1+c=ca+1=ca+b=rq=ab+c=1+c=ca+1=ca+b=r
Nếu hai số cùng tính chẵn lẻ là a và c hoặc b và c thì ta làm tương tự như trên
⇒⇒ Trong ba số nguyên tố p,q,r phải có hai số bằng nhau .
Cho các số p = b^c + a, q = a^b + c, r = c^a + b (a, b, c thuộc N*) là các số nguyên tố. CMR 3 số p, q, r có ít nhất 2 số bằng nhauCho các số p = b^c + a, q = a^b + c, r = c^a + b (a, b, c thuộc N*) là các số nguyên tố. CMR 3 số p, q, r có ít nhất 2 số bằng nhau
Cho các số a,b,c là số nguyên
Ta có : a+b+c = a*b*c . Tìm các số a,b,c
Cho các số a,b,c là số nguyên
Ta có : a+b+c = a*b*c . Tìm các số a,b,c
Đa 1;2;3
Cho a,b,c là các số nguyên thỏa măn các điều kiện: a+b-c=15 ;a-b+c=21 và -a+b+c=-2015. Tìm các số nguyên đó.
=> a+b-c+a-b+c-a+b+c = 15+21-2015
=> a+b+c = -1979
=> a = 18 ; b = -1000 ; c = -997
Tk mk nha
2) Có bao nhiêu số tự nhiên có các chữ số khác với các chữ số của các số còn lại trong 3 số là số a; số b; số c mà mỗi số có 2 số hoặc 3 số sao cho các một số công thức sau mà khi thay số a; số b; số c thành các số thích hợp thì các câu có công thức, số dưới đây là đúng mà không sai một số nào:
a - b + c + a + b - c - a + b + c = 0
a.b.c = a/b/c
a - b - c = (a + b) / c ...
< Topdaorongs >
Ai làm nhanh cho k, zui mà, đúng không ? :D :D :D