giá trị của x để 3(2x + 9 )2 _ 1 đạt giá trị nhỏ nhất
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
. Giúp mình giải những bài trong Violympic nhé !
1. Giá trị của x để biểu thức B = 3 - x2 + 2x đạt giá trị lớn nhất .
2. Giá trị lớn nhất của biểu thức A = - 2x2+x-5 .
3. Giá trị của biểu thức 4x(x+1)-(1+2x)2-9 .
4. Giá trị của x để x2-48x+65 đạt giá trị nhỏ nhất.
5. Giá trị rút gọn của biểu thức (2x-4)(x+3)-2x(x+1).
6. Giá trị nhỏ nhất của biểu thức 4x2-20x+40.
7. Giá trị của x để 3(2x+9)2-1 đạt giá trị nhỏ nhất.
8. Giá trị của x để x2-48x+65 đạt giá trị nhỏ nhất.
9. Giá trị nhỏ nhất của biểu thức A = x(x+1)+3/2 .
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
1 .
3−x2+2x3−x2+2x
=−(x2−2x−3)=−(x2−2x−3)
=−(x2−2.x.1+1−4)=−(x2−2.x.1+1−4)
=−((x−1)2−4)=−((x−1)2−4)
=4−(x−1)2≤4=4−(x−1)2≤4
Vậy MAXB=4⇔x−1=0⇒x=1
2 .
A=2x2−5x+2=2(x2−52x+2516)−98A=2x2−5x+2=2(x2−52x+2516)−98
=2(x−54)2−98=2(x−54)2−98
Ta có : 2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x
Vậy GTNN A = -9/8 <=> x = 5/4
3 .
1) giá trị lớn nhất của -17-(x-3)^2
2) giá trị của x để x^2-48x+65 đạt giá trị nhỏ nhất
3) (x-a)(x+a)=x^2-169
4) giá trị của x để 3(2x+9)^2-1 đạt giá trị nhỏ nhất
5) giá trị rút gọn của (x-1)(x+2)-(x+1)x
6) giá trị của biểu thức 4x(x+1)-(1+2x)^2-9
1. Giá trị lớn nhất của -17- (x-3)^2
2.Giá trị nhỏ nhất của biểu thức A= x(x+1) +3/2
3.Giá trị lớn nhất của biểu thức A = -2x^2 +5 -5
4.Giá trị nhỏ nhất của 3x^2 +2x +28/3
5.Giá trị của x để x^2 -48x +65 đạt giá trị nhỏ nhất
6.GIá trị của x để biểu thức B=3 - x^2 +2x
7.Giá trị của x để 3(2x +9)^2 -1 đạt giá trị nhỏ nhất
8.Hệ số của x trong khai triển của đa thức (1/2x +2 )^2
Ai giúp mình với !
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
\(5.\)
\(x^2-48x+65\)
\(=\left(x-24\right)^2\ge0\)với \(\forall x\)
\(\left(x-24\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow\left(x-24\right)^2-511\ge-511\)với \(\forall x\)
Vậy \(Max=-511\)khi \(x=24\)
1/Nghiệm của đa thức :x^2-60x+900
2/giá trị nhỏ nhất của biểu thức 4x^2-20x+40
3/giá trị lớn nhất của:-17-(x-3)^2
4/giá trị của x để 3(2x+9)^2-1 đạt giá trị nhỏ nhất
5/ giá trị của biể thức 2x(1-x)+2x(x-1)-50
Cho x2_60x+900=0
Suy ra:x2_2.x.30+302=0
(x-30)2=0
suy ra x-30=0
vậy x=30
tìm giá trị của x để 3(2x+9)2 - 1 đạt giá trị nhỏ nhất
1. Giá trị lớn nhất của -17- (x-3)^2
2.Giá trị nhỏ nhất của biểu thức A= x(x+1) +3/2
3.Giá trị lớn nhất của biểu thức A = -2x^2 +5 -5
4.Giá trị nhỏ nhất của 3x^2 +2x +28/3
5.Giá trị của x để x^2 -48x +65 đạt giá trị nhỏ nhất
6.GIá trị của x để biểu thức B=3 - x^2 +2x
7.Giá trị của x để 3(2x +9)^2 -1 đạt giá trị nhỏ nhất
8.Hệ số của x trong khai triển của đa thức (1/2x +2 )^2
Tính giá trị của biến x để. a)P=1/x^2+2x+6 đạt giá trị lớnnhất
b)Q=X^2 +4x+6/3 đạt giá trị nhỏ nhất
\(a,P=\dfrac{1}{x^2+2x+1+5}=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{0+5}=\dfrac{1}{5}\\ \text{Dấu }"="\Leftrightarrow x=-1\\ b,Q=\dfrac{x^2+4x+4+2}{3}=\dfrac{\left(x+2\right)^2+2}{3}\ge\dfrac{0+2}{3}=\dfrac{2}{3}\\ \text{Dấu }"="\Leftrightarrow x=-2\)
a) Ta có: x2+2x+6
=x2+2x+1+5
=(x+1)2+5 ≤ 5 với mọi x
=>x2+x+6=5
=>\(\dfrac{1}{x^2+x+6}\)≤\(\dfrac{1}{5}\)
dấu bằng xảy ra ⇔x=-1
b)
x2+4x+6=x2+4x+4+2=(x+2)2+2 ≥ 2
⇒A=\(\dfrac{x^2+4x+6}{3}\)≥ \(\dfrac{2}{3}\)
Vậy giá trị nhỏ nhất của biểu thức là \(\dfrac{2}{3}\), dấu ''='' xảy ra khi và chỉ khi x = -2
tìm nghiệm 4x2+4x+1
giá trị của x để biểu thức đạt giá trị nhỏ nhất 3(2x+9)2-1
Giá trị của x để 2x^2-4x+1 đạt giá trị nhỏ nhất
2x2 - 4x + 1 = 2x2 - 4x + 2 - 1 = 2(x2 - 2x + 1) - 1 = 2(x - 1)2 - 1
(x - 1)2 ≥ 0 với mọi x (dấu "=" xảy ra khi x = 1) => 2(x - 1)2 ≥ 0
=> 2(x - 1)2 - 1 ≥ -1
=> GTNN của biểu thức là -1 khi x = 1