1, So sánh
C=\(\dfrac{10^{11}-1}{10^{12}-1}\) và D=\(\dfrac{10^{10}+1}{10^{11}+1}\)
So Sánh : \(\dfrac{10^{11}-1}{10^{12}-1}\)và\(\dfrac{10^{10}+1}{10^{11}+1}\)
Ta có :
\(A=\dfrac{10^{11}-1}{10^{12}-1}< 1\)
\(\Leftrightarrow A< \dfrac{10^{11}-1+11}{10^{12}-1+11}=\dfrac{10^{11}+10}{10^{12}+10}=\dfrac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}=\dfrac{10^{10}+1}{10^{11}+1}=B\)
Vậy \(\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{10^{10}+1}{10^{11}+1}\)
Vậy...
Vì \(10^{11}-1< 10^{12}-1\)
\(\Rightarrow\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{10^{11}-1+11}{10^{12}-1+11}=\dfrac{10^{11}+10}{10^{12}+10}=\dfrac{10^{10}+1}{10^{11}+1}\)
Cho \(A=\dfrac{10^{11}-1}{10^{12}-1}\); \(B=\dfrac{10^{10}+1}{10^{11}+1}\) So sánh \(A\) và \(B\)
Lời giải:
$B=\frac{10^{11}+10}{10^{12}+10}$
Đặt $10^{11}-1=a; 10^{12}-1=b$ thì $0< a< b$. Khi đó:
$A-B=\frac{a}{b}-\frac{a+11}{b+11}=\frac{11(a-b)}{b(b+11)}<0$
$\Rightarrow A< B$
a, Cho a,b,n ϵ N* . Hãy so sánh \(\dfrac{a+n}{b+n}và\dfrac{a}{b}\)
b, Cho A= \(\dfrac{10^{11}-1}{10^{12}-1};B=\dfrac{10^{10}+1}{10^{11}+1}.\) So sánh A và B
Lời giải:
a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)
Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$
Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$
Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$
b) Rõ ràng $10^{11}-1< 10^{12}-1$.
Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$
Áp dụng kết quả phần a:
$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$
So Sánh:
A=\(\dfrac{10^{11}-1}{10^{12}-1}\) và B=\(\dfrac{10^{10}+1}{10^{11}+1}\)
C=\(\dfrac{2005^{2005}+1}{2005^{2006}+1}\) và D=\(\dfrac{2005^{2004}+1}{2005^{2005}+1}\)
So sánh:
A) \(\dfrac{n+1}{n+2}\) và \(\dfrac{n}{n+3}\)
B) A= \(\dfrac{10^{11}-1}{10^{12}-1}\) và B= \(\dfrac{10^{10}+1}{10^{11}+1}\)
Mọi người giúp mình với mình đang cần gấp!
Lời giải:
a.
\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)
\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)
b.
\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)
$\Rightarrow 10A< 10B\Rightarrow A< B$
So sánh hai phân số:
a) \(\dfrac{1}{5}\) và \(\dfrac{3}{5}\) b) \(\dfrac{9}{10}\) và \(\dfrac{3}{10}\) c) \(\dfrac{7}{12}\) và \(\dfrac{11}{12}\) d) \(\dfrac{7}{8}\) và \(\dfrac{5}{8}\)
e) \(\dfrac{17}{100}\) và \(\dfrac{23}{100}\) g) \(\dfrac{4}{10}\) và \(\dfrac{1}{10}\) h) \(\dfrac{100}{100}\) và \(\dfrac{49}{100}\) k) \(\dfrac{15}{15}\) và \(\dfrac{2}{15}\)
a) \(< \)
b) \(>\)
c) \(< \)
d) \(>\)
e) \(< \)
g) \(>\)
h) \(>\)
k) \(>\)
Không quy đồng ,hãy so sánh hai phân số
a \(\dfrac{19}{10}và\dfrac{10}{11}\)
b \(\dfrac{11}{10}và\dfrac{12}{11}\)
c \(\dfrac{9}{10}và\dfrac{10}{11}\)
a. 19/10 > 10/11
b. 11/10 = 12/11
c. 9/10 = 10/11
a)\(\dfrac{19}{10}>\dfrac{10}{11}\)
b)\(\dfrac{11}{10}=\dfrac{12}{11}\)
c)\(\dfrac{9}{10}< \dfrac{10}{11}\)
2/ So sánh các phân số sau :
a/ \(\dfrac{7}{10}\) và \(\dfrac{11}{15}\) ; b/ \(\dfrac{-1}{8}\) và \(\dfrac{-5}{24}\) ; c/ \(\dfrac{25}{100}\) và \(\dfrac{10}{40}\)
2/
a/ \(\dfrac{7}{10}=\dfrac{7.15}{10.15}=\dfrac{105}{150}\)
\(\dfrac{11}{15}=\dfrac{11.10}{15.10}=\dfrac{110}{150}\)
-Vì \(\dfrac{105}{150}< \dfrac{110}{150}\)(105<110)nên \(\dfrac{7}{10}< \dfrac{11}{15}\)
b/ \(\dfrac{-1}{8}=\dfrac{-1.3}{8.3}=\dfrac{-3}{24}\)
-Vì \(\dfrac{-3}{24}>\dfrac{-5}{24}\left(-3>-5\right)\)nên\(\dfrac{-1}{8}>\dfrac{-5}{24}\)
c/\(\dfrac{25}{100}=\dfrac{25:25}{100:25}=\dfrac{1}{4}\)
\(\dfrac{10}{40}=\dfrac{10:10}{40:10}=\dfrac{1}{4}\)
-Vì \(\dfrac{1}{4}=\dfrac{1}{4}\)nên\(\dfrac{25}{100}=\dfrac{10}{40}\)
a/ \(\dfrac{7}{10}< \dfrac{11}{15}\)
c/ \(\dfrac{25}{100}=\dfrac{10}{40}\)
a)
b)
c) \(\dfrac{25}{100}=\dfrac{10}{40}\)
So sánh A = \(\dfrac{10^{11}-1}{10^{12}-1}\) và B =\(\dfrac{10^{10}+1}{10^{11}+1}\)
ta có: \(A=\dfrac{10.10^{10}-1}{10.10^{11}-1}=\dfrac{10^{10}-1}{10^{11}-1}\)
so sánh: \(A=\dfrac{10^{10}-1}{10^{11}-1}\)và \(B=\dfrac{10^{10}+1}{10^{11}+1}\)
\(\Rightarrow A< B\)
10A=\(\dfrac{10^{12}-10}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\)
10B =\(\dfrac{10^{11}+10}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\)
\(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{12}+1}\) =>\(1-\dfrac{9}{10^{12}-1}< 1+\dfrac{9}{10^{11}+1}\)
=> 10A < 10B
=> A<B
Vậy A < B
\(A=\dfrac{10^{11}-1}{10^{12}-1};B=\dfrac{10^{10}+1}{10^{11}+1}\)
\(A=\dfrac{10.10^{10}-1}{10.10^{11}-1}\)và \(B=\dfrac{10^{10}+1}{10^{11}+1}\)
Vậy A<B