Cho hai số nguyen a,b sao cho a>b và |a |+ |b|= 2013 . Tính giá trị của biểu thức M=a+b
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hai số nguyen a,b sao cho a>b và |a |+ |b|= 2013 . Tính giá trị của biểu thức M=a+b
Cho hai số nguyen a,b sao cho a>b và |a |+ |b|= 2013 . Tính giá trị của biểu thức M=a+b
cho hai so nguyen a,b sao cho ab>0 và /a/+/b/=2013. tính giá trị của biểu thức M=a+b
Cho hai số nguyên a,b sao cho ab>0 và |a|+|b|=2013. Tính giá trị của biểu thức M=a+b
ab > 0 => a và b cùng dấu
M = a + b = 2013 hoặc -2013
Bài 4: Cho biểu thức M = (với x)
a) Rút gọn M
b) Tính giá trị của biểu thức M với x = - 3
Bài 5. Cho hai biểu thức: A = và B =
a) Tính giá trị của biểu thức A khi x = 5
b) Rút gọn biểu thức B
c) Biết P = A.B, tìm các số tự nhiên x để P ∈ Z
a) Tìm x sao cho giá trị của biểu thức x 2 + 1 không lớn hơn giá trị của biểu thức
b) Cho hai số a, b > 0 và a + b = 1 . C h ứ n g m i n h : a 2 + b 2 ≥ 1 / 2
a) x2 + 1 ≤ (x - 2)2 ⇔ x2 + 1 ≤ x2 - 4x + 4 ⇔ 4x ≤ 3
⇔ x ≤ 3/4
Vậy: x ≤ 3/4
b) a, b > 0
Ta có: a + b = 1 suy ra: (a + b)2 = 1 ⇒ a2 + 2ab + b2 = 1 (1)
Mặt khác (a - b)2 ≥ 0 với mọi a, b ⇒ a2 - 2ab + b2 ≥ 0 (2)
Cộng (1) và (2) vế theo vế, ta được:
2a2 + 2b2 ≥ 1 ⇒ 2(a2 + b2) ≥ 1 ⇒ a2 + b2 ≥ 1/2
B1 Cho biểu thức: A=(-a+b-c)-(-a-b-c)
a) Rút gọn A
b)Tính giá trụ của A khi a = 1; b = -1; c = -2
B2 Cho biểu thức A =(-m+n-p)-(-m-n-p)
a) Rút gọn A
b)Tính giá trị của A khi m = 1; n = -1; p = -2
B3 Cho biểu thức : A=(-2a+3b-4c)-(-2a-3b-4c)
a) Rút gọn A
b)Tính giá trị của A khi a = 2012;b = -1;c = -2013
Cho a+b+c=6 và ab+bc+ca=12. Tính giá trị của biểu thức: (a-b)^2012+(b-c)^2013+(c-a)^2014
Câu hỏi của Hà Văn Minh Hiếu - Toán lớp 8 - Học toán với OnlineMath
Ta có : \(a+b+c=6\)
\(\Rightarrow\left(a+b+c\right)^2=36\)
\(\Rightarrow a^2+b^2+c^2+2.\left(ab+bc+ca\right)=36\)
\(\Rightarrow a^2+b^2+c^2=36-2.12=12\)
Do đó : \(a^2+b^2+c^2=ab+bc+ca\left(=12\right)\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Khi đó biểu thức :
\(\left(a-b\right)^{2012}+\left(b-c\right)^{2013}+\left(c-a\right)^{2014}=0+0+0=0\)
Bài 1: Cho B = \(x^{2013}-2014x^{2012}+2014x^{2011}-2014x^{2010}+...-2014x^2+2014x-1\)
Tính giá trị của biểu thức B với x=2013.
Bài 2: Cho các số a,b,c khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị của biểu thức : M=\(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)
\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)
\(=x-1=2013-1=2012\)