Những câu hỏi liên quan
FS
Xem chi tiết
ML
24 tháng 3 2017 lúc 20:45

Dễ thấy là trong các số từ 1 tới 899 có số mà tổng các chữ số của nó bằng s, với 1 ≤ s ≤ 26. Thật thế,ví dụ. các số 1, ..., 9, 19, 29, 39, ..., 99, 199, 299, ..., 899 có tổng các chữ số lần lượt là 1, 2, ..., 26. 
Gọi s(n) là tổng các chữ số của n. 
Trong 1900 số tự nhiên liên tiếp k+1, ..., k+1900 có ít nhất 1 số chia hết cho 1000. Gọi số nhỏ nhất trong 1900 số đó mà chia hết cho 1000 là a*1000 ta có a*1000 + 899 ≤ k + 1900. Nếu s(a x 1000) chia hết cho 27 ta có đ.p.c.m Giả sử s( a x 1000 ) chia cho 27 dư r với 1\(\le\) r \(\le\) 26, tức 1 \(\le\) 27 - r \(\le\) 26 
Ta chọn số b mà 1 \(\le\) b \(\le\) 899 sao cho s( b ) = 27 - r 
=> s( a x 1000 + b )  = s( a x 1000) + s( b ) = ( 27n + r ) + ( 27 - r ) = 27( n + 1 ) chia hết cho 27 \(\left(ĐPCM\right).\)

Bình luận (0)
LT
24 tháng 3 2017 lúc 20:44

trong 1000 số tự nhiên liên tiếp đầu tiên luôn có 1 số chia hết cho 1000.

Gọi số đó là N000¯¯¯¯¯¯¯¯ luôn có tổng các chữ số là n

Xét 27 số : N000;N001;N002;...;N009;N019;...;N099;N199;...;N899

Có tổng các chữ số là : n;n+1;n+2;...;n+26

Sẽ luôn có 1 số chia hết 27

Suy ra ﴾đpcm﴿ 

Bình luận (0)
NK
Xem chi tiết
OO
6 tháng 1 2017 lúc 8:48

Dễ thấy là trong các số từ 1 tới 899 có số mà tổng các chữ số của nó bằng s, với 1 ≤ s ≤ 26. Thật thế, vd. các số 1, ..., 9, 19, 29, 39, ..., 99, 199, 299, ..., 899 có tổng các chữ số lần lượt là 1, 2, ..., 26. 
Gọi s(n) là tổng các chữ số của n. 
Trong 1900 số tự nhiên liên tiếp k+1, ..., k+1900 có ít nhất 1 số chia hết cho 1000. Gọi số nhỏ nhất trong 1900 số đó mà chia hết cho 1000 là a*1000 ta có a*1000 + 899 ≤ k + 1900. Nếu s(a*1000) chia hết cho 27 ta có đ.p.c.m Giả sử s(a*1000) chia cho 27 dư r với 1≤ r ≤ 26, tức 1 ≤ 27 - r ≤ 26 
Ta chọn số b mà 1 ≤ b ≤ 899 sao cho s(b) = 27 - r 
=> s(a*1000 + b) = s(a*1000) + s(b) = (27n + r) + (27 - r) = 27(n + 1) chia hết cho 27 (đ.p.c.m) 
 

Bình luận (0)
LB
6 tháng 1 2017 lúc 8:45

Trong 1000 số tự nhiên liên tiếp đầu tiên luôn có 1 số chia hết cho 1000. Gọi số đó là N000¯¯¯¯¯¯¯¯ luôn có tổng các chữ số là n

Xét 27 số :

N000;N001;N002;...;N009;N019;...;N099;N199;...;N899

Có tổng các chữ số là : n;n+1;n+2;...;n+26 

Sẽ luôn có 1 số chia hết 27

Suy ra (đpcm)

Bình luận (0)
PG
Xem chi tiết
ND
Xem chi tiết
MT
26 tháng 5 2015 lúc 8:53

rong 1000 số tự nhiên liên tiếp đầu tiên luôn có 1 số chia hết cho 1000. Gọi số đó là N000¯¯¯¯¯¯¯¯ luôn có tổng các chữ số là n

Xét 27 số :

N000;N001;N002;...;N009;N019;...;N099;N199;...;N899

Có tổng các chữ số là : n;n+1;n+2;...;n+26 

Sẽ luôn có 1 số chia hết 27

Suy ra (đpcm)

Bình luận (0)
NT
26 tháng 5 2015 lúc 8:52

xét 1000 số tự nhiên đầu tiên luân tồn tại 1 số chia hết cho 1000. Giả sử là A(A≤1000)
xét 27 số tự nhiên là:
A+1,A+2,A+3,...,A+9,A+19,A+29,...,A+99,A+199,A+299,...,A+899

**** cho anh nhé em

Bình luận (0)
TT
19 tháng 2 2016 lúc 19:14

xét 27 số chi đó rk

Bình luận (0)
LS
Xem chi tiết
NH
14 tháng 2 2016 lúc 15:51

câu cuối là chữ gì vậy

Bình luận (0)
NH
Xem chi tiết
TH
14 tháng 2 2016 lúc 16:19

CMR mình không biết

Bình luận (0)
NH
Xem chi tiết
NH
Xem chi tiết
GD
31 tháng 1 2017 lúc 22:04

Dễ thấy là trong các số từ 1 tới 899 có số mà tổng các chữ số của nó bằng s, với 1 ≤ s ≤ 26. Thật thế, vd. các số 1, ..., 9, 19, 29, 39, ..., 99, 199, 299, ..., 899 có tổng các chữ số lần lượt là 1, 2, ..., 26.
Gọi s(n) là tổng các chữ số của n.
Trong 1900 số tự nhiên liên tiếp k+1, ..., k+1900 có ít nhất 1 số chia hết cho 1000. Gọi số nhỏ nhất trong 1900 số đó mà chia hết cho 1000 là a*1000 ta có a*1000 + 899 ≤ k + 1900. Nếu s(a*1000) chia hết cho 27 ta có đpcm Giả sử s(a*1000) chia cho 27 dư r với 1≤ r ≤ 26, tức 1 ≤ 27 - r ≤ 26
Ta chọn số b mà 1 ≤ b ≤ 899 sao cho s(b) = 27 - r
=> s(a*1000 + b) = s(a*1000) + s(b) = (27n + r) + (27 - r) = 27(n + 1) chia hết cho 27 (đpcm)

Bình luận (0)
PT
Xem chi tiết
HH
25 tháng 4 2020 lúc 11:20

đó là số 999 vì 9+9+9=27

Bình luận (0)
 Khách vãng lai đã xóa
LN
25 tháng 4 2020 lúc 14:31

ố dó là 999

HỌC TỐT

Bình luận (0)
 Khách vãng lai đã xóa
TL
25 tháng 4 2020 lúc 14:35

đáp án là 999 nha bạn

Bình luận (0)
 Khách vãng lai đã xóa