Những câu hỏi liên quan
TY
Xem chi tiết
KA
3 tháng 1 2017 lúc 14:07

Gọi \(A=3.\left|x+\frac{-2}{5}\right|+\frac{5}{2}\)

Ta có :   \(\left|x+\frac{-2}{3}\right|\ge0\)

         \(3.\left|x+\frac{-2}{3}\right|\ge0\)

\(3.\left|x+\frac{-2}{3}\right|+\frac{5}{2}\ge\frac{5}{2}\)

\(\Rightarrow Min_A=\frac{5}{2}\)

\(\Leftrightarrow3.\left|x+\frac{-2}{3}\right|=0\)

\(\Leftrightarrow\left|x+\frac{-2}{5}\right|=0\)

\(\Leftrightarrow x+\frac{-2}{5}=0\)

\(\Leftrightarrow x=\frac{2}{5}\)

Bình luận (0)
YN
26 tháng 3 2022 lúc 20:56

`Answer:`

1. 

Do \(\left|x-\frac{2}{5}\right|\ge0\forall x\)

\(\Rightarrow3.\left|x-\frac{2}{5}\right|\ge0\forall x\)

\(\Rightarrow3.\left|x-\frac{2}{5}\right|+\frac{5}{2}\ge\frac{5}{2}\forall x\)

Dấu "=" xảy ra khi \(\left|x-\frac{2}{5}\right|=0\Leftrightarrow x-\frac{2}{5}=0\Leftrightarrow x=\frac{2}{5}\)

Vậy \(3.\left|x-\frac{2}{5}\right|+\frac{5}{2}\) đạt giá trị nhỏ nhất \(=\frac{5}{2}\Leftrightarrow x=\frac{2}{5}\)

2. 

Do \(\left|x-\frac{1}{2}\right|\ge0\forall x\)

\(\Rightarrow\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow A\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(\left|x-\frac{1}{2}\right|=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

Vậy giá trị nhỏ nhất của \(A=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
P2
Xem chi tiết
SX
Xem chi tiết
CT
Xem chi tiết
SX
Xem chi tiết
PA
13 tháng 1 2016 lúc 21:43

cậu 1 GTNN=1 khi x=0

câu 2 GTLN =12/11 khi x=3/2

Bình luận (0)
H24
13 tháng 1 2016 lúc 21:52

ta co : x^2-3x+5=(x+3/2)^2+11/4  => (x+3/2)^2+11/4 >hoac= 11/4 ; roi ban lay 3 chia cho ca 2 ve ta duoc : 3/(x^2-3x+5) >hoac = 12/11 ;             dau = xay ra =>max=12/11 <=>x=-3/2                                                                                                                                                                                                     chuc ban hoc tot !!!!!

Bình luận (0)
PA
13 tháng 1 2016 lúc 21:58

anh giải sai rồi phải =-3/2

Bình luận (0)
SX
Xem chi tiết
NV
20 tháng 10 2015 lúc 21:01

a/ \(M=x^2-2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+5\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Vậy Min M = 11/4 khi x - 3/2 = 0 => x = 3/2

b/ \(N=-\left(4x^2-\frac{2}{8}x+5\right)\)

\(=-\left[\left(2x\right)^2-2.2x.\frac{1}{16}+\left(\frac{1}{16}\right)^2-\left(\frac{1}{16}\right)^2+5\right]\)

\(=-\left(2x-\frac{1}{16}\right)^2-\frac{1279}{256}\ge-\frac{1279}{256}\)

Vậy Min N = -1279/256 khi 2x - 1/16 = 0 => 2x = 1/16 => x = 1/32

Bình luận (0)
CT
Xem chi tiết
NT
Xem chi tiết
SN
9 tháng 7 2016 lúc 15:54

x4+3x2-4

=(x2)2+1,5.2.x2+2,25-6,25

=(x2+1,5)2-6,25>(=)-6,25

Bình luận (0)
NM
9 tháng 7 2016 lúc 15:54

=[ (x^2)^2 + 2.x^2.3/2 + 9/4 ] +7/4

= ( x^2 + 3/2)^2 +7/4 >= 7/4

Vì (x^2 +3/2)^2 >= 0 với mọi x

Dấu = xảy ra <=> x= -3/2

Bình luận (0)
NT
9 tháng 7 2016 lúc 16:02

x+ 3x2 - 4=(x2)2 +1,5.2x+2,26-6,25

=>(x2+1,5)2 -6,25 \(\ge\)-6,25

Bình luận (0)
KS
Xem chi tiết
TM
5 tháng 2 2021 lúc 14:23

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

Bình luận (0)
 Khách vãng lai đã xóa
TM
5 tháng 2 2021 lúc 14:25

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

Bình luận (0)
 Khách vãng lai đã xóa
US
16 tháng 11 2021 lúc 7:53

1 . 

3−x2+2x3−x2+2x

=−(x2−2x−3)=−(x2−2x−3)

=−(x2−2.x.1+1−4)=−(x2−2.x.1+1−4)

=−((x−1)2−4)=−((x−1)2−4)

=4−(x−1)2≤4=4−(x−1)2≤4

Vậy MAXB=4⇔x−1=0⇒x=1

2 . 

A=2x2−5x+2=2(x2−52x+2516)−98A=2x2−5x+2=2(x2−52x+2516)−98

=2(x−54)2−98=2(x−54)2−98

Ta có : 2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x

Vậy GTNN A = -9/8 <=> x = 5/4 

3 . 

Bình luận (0)
 Khách vãng lai đã xóa
SX
Xem chi tiết
PN
11 tháng 1 2016 lúc 9:23

\(\left(\text{*}\right)\) Tìm giá trị lớn nhất của biểu thức sau:

Ta có:

\(A=\frac{x^2+1}{x^2-x+1}=\frac{2\left(x^2-x+1\right)-\left(x^2-2x+1\right)}{x^2-x+1}=2-\frac{\left(x-1\right)^2}{x^2-x+1}\le2\) với mọi  \(x\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\) \(\left(x-1\right)^2=0\)  \(\Leftrightarrow\)  \(x-1=0\)  \(\Leftrightarrow\) \(x=1\)

Vậy,   \(A_{max}=2\) \(\Leftrightarrow\) \(x=1\)

                                 -------------------------------------------------

\(B=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\) với mọi  \(x\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\) \(\left(2x+1\right)^2=0\)  \(\Leftrightarrow\) \(2x+1=0\)  \(\Leftrightarrow\)  \(x=-\frac{1}{2}\)

Vậy,   \(B_{max}=4\)  \(\Leftrightarrow\)  \(x=-\frac{1}{2}\)

                              ____________________________________

 \(\left(\text{*}\text{*}\right)\)  Tìm giá trị nhỏ nhất của biểu thức sau:

Từ \(A=\frac{x^2+1}{x^2-x+1}\)

\(\Rightarrow\) \(3A=\frac{3x^2+3}{x^2-x+1}=\frac{\left(x^2+2x+1\right)+2\left(x^2-x+1\right)}{x^2-x+1}=\frac{\left(x+1\right)^2}{x^2-x+1}+2\ge2\)  với mọi  \(x\)

Vì   \(3A\ge2\) nên  \(A\ge\frac{2}{3}\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\) \(\left(x+1\right)^2=0\)  \(\Leftrightarrow\)  \(x+1=0\)  \(\Leftrightarrow\) \(x=-1\)

Vậy,   \(A_{min}=\frac{2}{3}\)  \(\Leftrightarrow\)  \(x=-1\)

Câu b) tự giải

Bình luận (0)