Những câu hỏi liên quan
MH
Xem chi tiết
MH
Xem chi tiết
TH
Xem chi tiết
PB
Xem chi tiết
CT
4 tháng 5 2018 lúc 10:15

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 8 2017 lúc 2:50

Chọn B.

Cách giải:

Nhận xét:  Để tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0 thì số lượng số 1 và số lượng số -1 trong mỗi hàng và mỗi cột đều là 2. 

 

⇔  Mỗi hàng và mỗi cột đều có đúng 2 số 1. 

- Ở mỗi hàng mà chứa 2 ô vừa được chọn, ta chọn đúng 1 ô để đặt số 1, khi đó có 2 trường hợp:

Khi đó, ở 2 hàng còn lại có duy nhất cách đặt số 1 vào 4 ô : không cùng hàng và cột với các ô đã điền. Như hình vẽ sau:

TH2: 2 ô được chọn khác hàng: có: 3.2 = 6 (cách)

Ví dụ:

Khi đó, số cách đặt 4 số 1 còn lại là: 1.1.2! = 2 (cách), trong đó, 2 số 1 để vào đúng 2 ô còn lại của cột chưa điền, 2 số 1 còn lại hoàn vị vào 2 ô ở 2 cột vừa điền ở bước trước. Ví dụ:

Bình luận (0)
H24
Xem chi tiết
DH
28 tháng 5 2022 lúc 1:11

Bình luận (0)
H24
Xem chi tiết
DH
28 tháng 5 2022 lúc 0:06

Trên mỗi hàng, mỗi cột phải có hai số -1, hai số 1. 

Ta sẽ xếp theo hàng. 

Ta có các khả năng của các hàng như sau: 

(1) 1, 1, -1, -1 

(2) 1, -1, -1, 1

(3) -1, -1, 1, 1

(4) -1, 1, -1, 1

(5) 1, -1, 1, -1

(6) -1, 1, 1, -1

Giả sử hàng 1 ta điền bộ (1). Ta có các trường hợp sau: 

TH1: Hàng 2 điền bộ (1), khi đó hàng 3, hàng 4 ta phải điền bộ (3). 

TH2: Hàng 2 điền bộ để tổng 2 số trong của các cột bằng 0, khi đó ta điền bộ (3). Hàng 3 và hàng 4 khi đó cũng phải điền sao cho tổng các cột trong hai hàng bằng 0. Có 6 cách điền như vậy. 
TH3: Hàng 2 điền sao cho có 2 cột trong 4 cột có tổng bằng 0. Có 4 cách. Khi đó điền hàng 3 có 2 cách, điền hàng 4 có 1 cách. Tổng số cách là: 1.4.2.1=8 (cách). 

Vậy có tổng số cách là: 6.(1 + 6 + 8) = 90 (cách).

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 5 2018 lúc 9:15

Chọn B

Ta có 

Xét A ¯ : Có ít nhất một hàng hoặc một cột chỉ toàn số chẵn.

Vì chỉ có 4 số chẵn là 2, 4, 6, 8 nên chỉ có thể có đúng một hàng hoặc đúng một cột chỉ toàn các số chẵn. Để điền như vậy cần chọn một trong số ba hàng hoặc ba cột rồi chọn 3 số chẵn xếp vào hàng hoặc cột đó, 6 số còn lại xếp tùy ý. Do đó 

Vậy 

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 8 2019 lúc 13:41

Chọn đáp án C.

Số cách sắp xếp 9 chữ số đã cho vào ô vuông bằng n(Ω)=9!

Ta có: A  là biến cố: “tồn tại một hàng hoặc một cột gồm ba số chẵn”.

Do có 4 số chẵn (2, 4, 6, 8) nên A  là biến cố: “có đúng một hàng hoặc một cột gồm 3 số chẵn”.

Ta tính n A :

Chọn 4 ô điền số chẵn:

Ø Chọn một hàng hoặc một cột thì có 6 cách.

Ø Chọn một ô còn lại có 6 cách.

Điền 4 số chẵn vào 4 ô trên có 4! cách.

Điền 5 số lẻ vào 5 ô còn lại có 5! Cách.

Bình luận (0)