Số giá trị của x thỏa mãn 2015.Ι1 - xΙ + (x - 1) = 2016.Ιx - 1Ι.(ghi lời giải)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
giá trị của x thỏa mãn (x/2015+x/2016)=(x/2016+x/2017)
\(\frac{x}{2015}+\frac{x}{2016}=\frac{x}{2016}+\frac{x}{2017}\)
\(\Rightarrow\frac{x}{2015}+\frac{x}{2016}-\frac{x}{2016}-\frac{x}{2017}=0\)
\(\Rightarrow\frac{x}{2015}-\frac{x}{2017}=0\)
\(\Rightarrow x.\left(\frac{1}{2015}-\frac{1}{2017}\right)=0\)
Mà ta thấy \(\frac{1}{2015}-\frac{1}{2017}\ne0\Rightarrow x=0\)
Vậy \(x=0\)
\(\frac{x}{2015}+\frac{x}{2016}=\frac{x}{2016}+\frac{x}{2017}\)
\(\Leftrightarrow\frac{x}{2015}+\frac{x}{2016}-\frac{x}{2016}-\frac{x}{2017}=0\)
\(\Leftrightarrow x\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2016}-\frac{1}{2017}\right)=0\)
\(\Leftrightarrow x=0\).Do \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2016}-\frac{1}{2017}\ne0\)
Vậy giá trị của x là x=0
Giá trị của x thỏa mãn | x/2015 + x/2016 | = | x/2016 + x/2017|
Cho x, y, z khác 0 thỏa mãn x-y+z=2016 và 1/x+1/y+1/z =1/2016 hãy tính giá trị của biểu thức B = (x-2016)(y-2016)(z-2016)
Mk cần lời giải gấpS
Cho các số x , y thỏa mãn :
\(\left(x+\sqrt{x^2}+2016\right)\left(y+\sqrt{y^2}+2016\right)=2016\)
Tìm giá trị của biểu thức \(P=x^{2015}+y^{2015}+2016\left(x+y\right)+1\)
Ta có (x + |x| + 2016)(y + |y| + 2016) > 2016 với mọi x, y nên không thể tính được P
Giá trị x thỏa mãn
|x/2015 + x/2016 | = | x/2016 + x/2017|
\(\left|\frac{x}{2015}+\frac{x}{2016}\right|=\left|\frac{x}{2016}+\frac{x}{2017}\right|\)
<=>\(\left|x\right|.\left|\frac{1}{2015}+\frac{1}{2016}\right|=\left|x\right|.\left|\frac{1}{2016}+\frac{1}{2017}\right|\)
<=>\(\left|x\right|.\left(\frac{1}{2015}+\frac{1}{2016}\right)=\left|x\right|.\left(\frac{1}{2016}+\frac{1}{2017}\right)\)
<=>\(\left|x\right|.\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left|x\right|.\left(\frac{1}{2016}+\frac{1}{2017}\right)=0\)
<=>\(\left|x\right|.\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2016}-\frac{1}{2017}\right)=0\)
<=>\(\left|x\right|.\left(\frac{1}{2015}-\frac{1}{2017}\right)=0\)
Vì \(\frac{1}{2015}-\frac{1}{2017}\ne0\Rightarrow\left|x\right|=0\Rightarrow x=0\)
Vậy x=0
\(\left|\frac{x}{2015}+\frac{x}{2016}\right|=\left|\frac{x}{2016}+\frac{x}{2017}\right|\)
\(\Rightarrow\left|x.\left(\frac{1}{2015}+\frac{1}{2016}\right)\right|=\left|x.\left(\frac{1}{2016}+\frac{1}{2017}\right)\right|\)
\(\Rightarrow\left|x\right|.\left|\frac{1}{2015}+\frac{1}{2016}\right|=\left|x\right|.\left|\frac{1}{2016}+\frac{1}{2017}\right|\)
\(\Rightarrow\left|x\right|.\left(\frac{1}{2015}+\frac{1}{2016}\right)=\left|x\right|.\left(\frac{1}{2016}+\frac{1}{2017}\right)\)
Mà \(\frac{1}{2015}+\frac{1}{2016}>\frac{1}{2016}+\frac{1}{2017}\)
=> |x| = 0
=> x = 0
Vậy x = 0
cho x và y là các số nguyên dương thỏa mãn 2x+y/x+y=2016/2015 tìm giá trị nhỏ nhất của y
giá trị của x thỏa mãn
x/2015 + x/2016 + x/2017 = x/2018
TÌM x
\(\frac{x}{2015}+\frac{x}{2016}+\frac{x}{2017}-\frac{x}{2018}\)\(=0\)=> \(x\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}\right)=0\)
Dễ thấy biếu thức trong ngoặc khác 0 nên \(x=0\).
Tập hợp các giá trị nguyên x thỏa mãn : | x + 2015 | + 2016 = 2017 là
| x + 2015 | + 2016 = 2017
| x + 2015 | = 2017 - 2016 = 1
x + 2015 = 1 hoặc x + 2015 = -1
x = 1 - 2015 hoặc x = -1 - 2015
x = -2014 hoặc x = - 2016
Tập hợp các giá trị của m để phương trình x2 + (4m + 1)x + 2(m - 4) = 0
có hai nghiệm x1; x2 thỏa mãn Ιx1 - x2Ι = 17 là: