Chứng minh rằng tổng của n số tự nhiên liên tiếp sẽ chia hết cho n nếu n là số lẻ
1) Chứng minh rằng tổng n số tự nhiên liên tiếp chia hết cho n nếu n là số lẻ ?
2) Chứng minh tổng n số tự nhiên liên tiếp không chia hết cho n nếu n là số chẵn ?
Bài 1 :
Nếu n lẻ thì n + 1 chẵn do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên không chia hết cho n vì n là số lẻ
Bài 2 :
Nếu n chẵn thì n + 1 lẻ do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên chia hết cho n vì n là số chẵn
Chứng tỏ rằng:
a) Tổng của n số tự nhiên liên tiếp là một số chia hết cho n, nếu n lẻ.
b) Tổng của số n số tự nhiên liên tiếp là một số không chia hết cho n, nếu n chẵn.
bài 3
http://data.nslide.com/uploads/resources/620/3533369/preview.swf
chứng tỏ rằng:
(a) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số lẻ?
(b) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số chẵn?
Ta có AEED =dt(AEN)dt(DEN) =hA→MNhD→MN =dt(AMN)dt(DMN)
Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)
dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)
Vậy AEED =dt(AMN)dt(DMN) =18 dt(ABC)14 dt(ABC) =12 , suy ra AE/AD = 1/3
Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)
DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB
DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)
=> AE/AD = 1/3
k mình nha
không nên:
Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.Chứng tỏ rằng:
(a) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số lẻ?
(b) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số chẵn?
Chứng tỏ rằng:
a) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số lẻ
b) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số chẵn
Ta có 1+2+...+n=n(n+1) chia hết cho n với mọi n
Bài 2: Chứng tỏ rằng:
a) Tổng của n số tự nhiên liên tiếp là một số chia hết cho n, nếu n lẻ.
b) Tổng của số n số tự nhiên liên tiếp là một số không chia hết cho n, nếu n chẵn.
Gọi n số tự nhiên liên tiếp là a; a + 1;...; a + n - 1
Ta có: a + (a + 1) + (a + 2) +...+ (a + n - 1)
= na + n(n - 1) : 2
= n(a + (n - 1) : 2)
a) Nếu n lẻ thì n - 1 chẵn nên (n - 1) : 2 là số tự nhiên, do đó --> đpcm.
b) Nếu n chẵn thì n - 1 lẻ nên (n - 1) : 2 không là số tự nhiên, do đó --> đpcm
Gọi n số tự nhiên liên tiếp là a; a + 1;...; a + n - 1
Ta có: a + (a + 1) + (a + 2) +...+ (a + n - 1)
= na + n(n - 1) : 2
= n(a + (n - 1) : 2)
a) Nếu n lẻ thì n - 1 chẵn nên (n - 1) : 2 là số tự nhiên, do đó --> đpcm.
b) Nếu n chẵn thì n - 1 lẻ nên (n - 1) : 2 không là số tự nhiên, do đó --> đpcm
Ai tích mk mk sẽ tích lại
Gọi n số tự nhiên liên tiếp là a; a + 1;...; a + n - 1
Ta có: a + (a + 1) + (a + 2) +...+ (a + n - 1)
= na + n(n - 1) : 2
= n(a + (n - 1) : 2)
a) Nếu n lẻ thì n - 1 chẵn nên (n - 1) : 2 là số tự nhiên, do đó --> đpcm.
b) Nếu n chẵn thì n - 1 lẻ nên (n - 1) : 2 không là số tự nhiên, do đó --> đpcm
chứng minh rằng tổng N số tự nhiên liên tiếp chia hết cho N (nếu N lẻ) và không chia hết cho N (nếu N chẵn)
các bạn có thể cho mình biết được không,đang cần gấp lắm.
Thật buồn cho bạn, đến năm 2020 rồi mà vẫn không có người trả lời. Mình cũng định trả lời nhưng có lẽ nó không cần nữa rồi. Mình rất xin lỗi vì bây giờ mình mới nhìn thấy câu hỏi của bạn. Thôi thì lỡ rồi, mình chỉ nói vậy coi như an ủi phần nào cho tâm hồn mỏng manh đã bị tổn thương sâu sắc của bạn. Chân thành xin lỗi.
d cuk ko cha loi noi cai quan que j the
Chứng tỏ rằng tổng của N số tự nhiên liên tiếp là số chia hết cho N, nếu N là số lẻ
Theo đề bài, gọi N số lẻ liên tiếp là : m, m+2, m+4, .....m + (n-1).2
-> Tổng của N số lẻ liên tiếp :
m + (m+2) + (m+4) + .... + [m+(n-1).2] (n số hạng)
= m+m+2+m+4+....+m+n-1.2
= (m+m+m...+m) + [2+4+...+(n-1).2]
= m.n+2.(1+2+...+n+1)
= m.n+2.(n-1).(n-1+1) : 2
= m.n+(n-1).n
= (m+n-1).n \(⋮\)N
=> Tổng của N STN liên tiếp chia hết cho N, nếu N lẻ
DUYỆT MK NHA ! THANKS ~~~
Chứng tỏ rằng tổng của n số tự nhiên liên tiếp là một số chia hết cho n nếu n là số lẻ