Những câu hỏi liên quan
DH
Xem chi tiết
DH
3 tháng 1 2017 lúc 20:09

Tìm \(n\in N\) để \(3^{2n+1}+2^{4n+1}⋮25\)

Bình luận (0)
LB
Xem chi tiết
NQ
2 tháng 7 2017 lúc 21:29

1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2

= 4/9 .y.y.y . (3/2-3/2.y)^2

=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)

<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5

=4/9 . 243/3125

=108/3125

Đến đó tự giải

Bình luận (0)
H24
2 tháng 7 2017 lúc 21:38


Thử sức với bài 1 xem thế nào :vv
x>0 => 0<x<=1 
f(x)=x^2(1-x)^3
Xét f'(x) = -(x-1)^2x(5x-2) 
Xét f'(x)=0 -> nhận x=2/5 và x=1thỏa mãn đk trên .
 Thử x=1 và x=2/5 nhận x=2/5 hàm số Max tại ddk 0<x<=1 (vậy x=1 loại)
P/s: HS cấp II hong nên làm cách này nhé em :vv 
 

Bình luận (0)
LB
2 tháng 7 2017 lúc 21:40
sai rồi hehe
Bình luận (0)
DL
Xem chi tiết
H24
5 tháng 3 2019 lúc 19:53

\(P=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{xz}{y+1}\)

\(P=\frac{xy}{\left(x+z\right)+\left(y+z\right)}+\frac{yz}{\left(x+y\right)+\left(x+z\right)}+\frac{xz}{\left(x+y\right)+\left(y+z\right)}\)

\(P\le\frac{1}{4}\left(\frac{xy}{x+z}+\frac{xy}{y+z}+\frac{yz}{x+y}+\frac{yz}{x+z}+\frac{xz}{x+y}+\frac{xz}{y+z}\right)\)

\(P\le\frac{1}{4}\left(x+y+z\right)=\frac{1}{4}\)

\("="\Leftrightarrow x=y=z=\frac{1}{3}\)

Bình luận (0)
NM
Xem chi tiết
PD
11 tháng 3 2018 lúc 19:39

áp dùng BDT cô si chúa Pain có

\(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2y^2}}=\frac{2}{xy}\Rightarrow xy\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\ge2.\)

mà \(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{2}\)

\(\Rightarrow\frac{xy}{2}\ge\Rightarrow xy\ge4\)

b)

áp dụng BDT cô si ta có

\(x+y\ge2\sqrt{xy}\)

lấy từ câu A ta có \(xy\ge4\) " câu a"

suy ra

\(x+y\ge2\sqrt{4}=4\)

Bình luận (0)
NH
Xem chi tiết
AN
2 tháng 12 2016 lúc 6:26

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

Bình luận (0)
NH
1 tháng 12 2016 lúc 22:57

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

Bình luận (0)
H24
2 tháng 12 2016 lúc 6:37

dong y quan diem @aliba

bo xung them. nhieu qua khi tra loi phan cau hoi troi len khoi man hinh =>" ko nhin duoc de bai"

(da khong biet lai con luoi dang cau hoi nua)

Bình luận (0)
N3
Xem chi tiết
TN
Xem chi tiết
ZN
25 tháng 4 2021 lúc 9:45

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
HY
Xem chi tiết
AB
21 tháng 5 2015 lúc 20:16

\(F=\frac{x^2}{x+x^3}+\frac{y^2}{y+y^3}\ge\frac{\left(x+y\right)^2}{\left(x+y\right)\left(x^2+y^2-xy+1\right)}=\frac{1}{1+\left(x+y\right)^2-3xy}=\frac{1}{2-3xy}\)\(\ge\frac{1}{2-\frac{3}{4}}=\frac{4}{5}\)

Dấu bằng xảy ra khi x=y=\(\frac{1}{2}\)

Bình luận (0)
VT
Xem chi tiết
PD
19 tháng 3 2020 lúc 18:46

Giờ bạn cần bài này nữa không 

Bình luận (0)
 Khách vãng lai đã xóa
PD
24 tháng 3 2020 lúc 19:41

1.   Đặt A = x2+y2+z2

             B = xy+yz+xz

             C = 1/x + 1/y + 1/z

Lại có (x+y+z)2=9

             A + 2B = 9

  Dễ chứng minh A>=B 

      Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)

Vì x+y+z=3 => (x+y+z) /3 =1 

    C = (x+y+z) /3x  +  (x+y+x) /3y + (x+y+z)/3z

C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x) 

Áp dụng bất đẳng thức (a/b+b/a) >=2

=> C >=3 ( khi và chỉ khi x=y=z=1)

P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1

Vậy ...........

Câu 2 chưa ra thông cảm 

Bình luận (0)
 Khách vãng lai đã xóa