Cho x,y dương thỏa mãn \(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{2}\).Tìm Max B=xy
cho x y z dương thỏa mãn xy+yz+xz=1. Tìm max P=\(\frac{x}{\sqrt{1+x^2}}\)+\(\frac{y}{\sqrt{1+y^2}}\)+\(\frac{z}{\sqrt{1+z^2}}\)
Tìm \(n\in N\) để \(3^{2n+1}+2^{4n+1}⋮25\)
1, Cho x,y: x+y=1 và x>0. Tìm Max A = x2y3
2, Cho x,y,z >0 thỏa mãn : xy+yz+zx=1. Tìm Max \(A=\frac{2x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\)
1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2
= 4/9 .y.y.y . (3/2-3/2.y)^2
=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)
<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5
=4/9 . 243/3125
=108/3125
Đến đó tự giải
Thử sức với bài 1 xem thế nào :vv
x>0 => 0<x<=1
f(x)=x^2(1-x)^3
Xét f'(x) = -(x-1)^2x(5x-2)
Xét f'(x)=0 -> nhận x=2/5 và x=1thỏa mãn đk trên .
Thử x=1 và x=2/5 nhận x=2/5 hàm số Max tại ddk 0<x<=1 (vậy x=1 loại)
P/s: HS cấp II hong nên làm cách này nhé em :vv
Cho x, y, z là các số thực dương thỏa mãn: x + y + z = 1.
Tìm max của \(P=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\)
\(P=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{xz}{y+1}\)
\(P=\frac{xy}{\left(x+z\right)+\left(y+z\right)}+\frac{yz}{\left(x+y\right)+\left(x+z\right)}+\frac{xz}{\left(x+y\right)+\left(y+z\right)}\)
\(P\le\frac{1}{4}\left(\frac{xy}{x+z}+\frac{xy}{y+z}+\frac{yz}{x+y}+\frac{yz}{x+z}+\frac{xz}{x+y}+\frac{xz}{y+z}\right)\)
\(P\le\frac{1}{4}\left(x+y+z\right)=\frac{1}{4}\)
\("="\Leftrightarrow x=y=z=\frac{1}{3}\)
Cho các số nguyên dương x, y thỏa mãn \(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{2}\). Tìm GTNN của
a) A = xy
b) B = x + y
áp dùng BDT cô si chúa Pain có
\(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2y^2}}=\frac{2}{xy}\Rightarrow xy\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\ge2.\)
mà \(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{2}\)
\(\Rightarrow\frac{xy}{2}\ge\Rightarrow xy\ge4\)
b)
áp dụng BDT cô si ta có
\(x+y\ge2\sqrt{xy}\)
lấy từ câu A ta có \(xy\ge4\) " câu a"
suy ra
\(x+y\ge2\sqrt{4}=4\)
1. Cho x,y là 2 số thực khác 0 thỏa mãn :5x2 +\(\frac{y^2}{4}\)+\(\frac{1}{4x^2}\)=\(\frac{5}{2}\).Tìm min, max của A=2013-xy
2.Cho x,y>0 thỏa mãn x+y=1.Tìm min của A=\(\frac{1}{x^2+y^2}\)+\(\frac{2}{xy}\)+4xy
3.Cho x,y là 2 số dương thoả mãn x+\(\frac{1}{y}\)\(\le\)1. Tìm min của C=32.\(\frac{x}{y}\)+2011.\(\frac{y}{x}\)
4.Cho x,y là 2 số thực dương thỏa mãn x+y=\(\frac{5}{4}\). Tìm min của A=\(\frac{4}{x}\)+\(\frac{1}{4y}\)
5.Giải phương trình : \(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}\)+\(\frac{1}{\sqrt{x+2}+\sqrt{x+1}}\)+\(\frac{1}{\sqrt{x+1}+\sqrt{x}}\)=1
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
Các bạn ơi giúp mình với ạ, cảm ơn nhiều!
dong y quan diem @aliba
bo xung them. nhieu qua khi tra loi phan cau hoi troi len khoi man hinh =>" ko nhin duoc de bai"
(da khong biet lai con luoi dang cau hoi nua)
Cho x,y là hai số thực thỏa mãn \(2x^2+\frac{y^2}{4}:\frac{1}{x^2}=3\) . Tìm Max,Min của B = 2020 + xy
Cho x,y,z là 3 số thực dương thỏa mãn xyz=1. Chứng minh:
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}>=\frac{3}{2}\)
Cho các số dương x,y,z thỏa mãn xy+yz+zx=3. Tìm GTNN của:
A= \(\frac{yz}{x^3+2}+\frac{xz}{y^3+2}+\frac{xy}{z^3+2}\)
Mình là thành viên mới, rất mong được học hỏi. Xin hãy giúp đỡ mình ạ!!!
\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)
\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)
Cho x,y là các số thực dương thỏa mãn x + y = 1. Tìm max của \(F=\frac{x}{1+x^2}+\frac{y}{1+y^2}\)
\(F=\frac{x^2}{x+x^3}+\frac{y^2}{y+y^3}\ge\frac{\left(x+y\right)^2}{\left(x+y\right)\left(x^2+y^2-xy+1\right)}=\frac{1}{1+\left(x+y\right)^2-3xy}=\frac{1}{2-3xy}\)\(\ge\frac{1}{2-\frac{3}{4}}=\frac{4}{5}\)
Dấu bằng xảy ra khi x=y=\(\frac{1}{2}\)
Bài 1:Cho 1. Cho x, y, z dương thỏa mãn x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức
\(P=2\left(x^2+y^2+z^2\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Bài 2:Cho hai số dương x, y thỏa mãn \(x+y\le2\) . Tìm giá trị nhỏ nhất của
\(C=\frac{1}{x^2+y^2}+\frac{7}{xy}+xy\)
Các bạn giải cho mình 1 bài là được rồi mà giải được cả 2 thì càng tốt
Giờ bạn cần bài này nữa không
1. Đặt A = x2+y2+z2
B = xy+yz+xz
C = 1/x + 1/y + 1/z
Lại có (x+y+z)2=9
A + 2B = 9
Dễ chứng minh A>=B
Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)
Vì x+y+z=3 => (x+y+z) /3 =1
C = (x+y+z) /3x + (x+y+x) /3y + (x+y+z)/3z
C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x)
Áp dụng bất đẳng thức (a/b+b/a) >=2
=> C >=3 ( khi và chỉ khi x=y=z=1)
P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1
Vậy ...........
Câu 2 chưa ra thông cảm