Tính
\(100^2-99^2+98^2-97^2+...+2^2\)
Tính:
a) A=2^100 - 2^99 + 2^98 - 2^97 + ... + 2^2 - 2
b) B=3^100 - 3^99 + 3^98 - 3^97 + ... + 3^2 - 3
Tính:1:99/100:98/99:97/98:....:2/3:1/2
Tính
1 : 99/100: 98/97 : 97/98 : ... : 3/4 : 2/3 : 1/2
=1.100/99.98/99.....2/1
=1.100
=100
Tính giá trị các biểu thức sau:
a) A = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100
b) B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100
a)
C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = − 1 + − 1 + ... + − 1 + − 1 = − 1.50 = − 50.
b)
B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100 = 1 − 2 + − 3 + 4 + 5 − 6 + ... + 97 − 98 + − 99 + 100 = − 1 + 1 + − 1 + ... + − 1 + 1 = − 1 + 1 + − 1 + 1 + ... + − 1 + 1 − 1 = 0 + 0 + ... + 0 − 1 = − 1.
Tính nhanh
a, 1-2+3-4+.....+2015-2016+2017
b,1+3-5-7+9+11+....+97-98-99+100+101
c,1-2-3+4+5-6-7+....+97-98-99+100+101
d,2^100-2^99-2^98-....-2-1
Nhanh nha m dang cần gấp
Tính
S=1+2-3-4+5+6-7-8+9+10-11-12+........+97+98-99-100
A=2100-299+298-297+......+22-2
A= \(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
B=3\(3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)
Tính 2 biểu thức trên
a) \(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
\(\Rightarrow3A=A+2A=2^{101}-2\)
\(\Rightarrow A=\frac{2^{101}-2}{3}\)
b) \(3B=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)
\(\Rightarrow4B=B+3B=3^{101}+1\)
\(\Rightarrow B=\frac{3^{101}+1}{4}\)
tính
1 : 99 / 100 : 98 / 99 : 97 / 98 : ... : 3 / 4 : 2 / 3 : 1 / 2
\(=\frac{99}{100}.\frac{99}{98}.\frac{98}{97}.\frac{97}{96}.....\frac{4}{3}.\frac{3}{2}.\frac{2}{1}\)
Ta loại các số giống nhau ở tử và mẫu thì được
\(\frac{99}{100}.\frac{99}{1}\)
\(=\frac{9801}{100}\)
= \(\frac{99}{100}.\frac{99}{98}.\frac{98}{97}.\frac{96}{97}...\frac{4}{3}.\frac{3}{2}.\frac{2}{1}\)
Ta loại các số giống nhau ở tử số và mẫu số thì đc :
\(\frac{99}{100}.\frac{99}{1}\)
= \(\frac{9801}{100}\)
Tính : 2^100-2^99+2^98-2^97+.....+2^2-2
Tính: \(2^{100}-2^{99}-2^{98}-2^{97}-..-2-1\)
HELP ME!
Đặt \(A=2^{100}-2^{99}-2^{98}-2^{97}-\cdot\cdot\cdot-2-1\)
\(=-\left(1+2+\cdot\cdot\cdot+2^{99}+2^{100}\right)\)
Đặt \(B=1+2+\cdot\cdot\cdot+2^{99}+2^{100}\)
\(2B=2+2^2+\cdot\cdot\cdot+2^{100}+2^{101}\)
\(2B-B=2+2^2+\cdot\cdot\cdot+2^{100}+2^{101}-\left(1+2+\cdot\cdot\cdot+2^{99}+2^{100}\right)\)
\(B=2^{101}-1\)
Thay \(B=2^{101}-1\) vào \(A\), ta được:
\(A=-\left(2^{101}-1\right)\)
\(=1-2^{101}\)
#\(Toru\)