Cho 7a = 9b =21c và a - b + c = 15. Khi đó, (a + b - c)2 = _____
Cho 7a = 9b = 21c và a-b+c = 15. Khi đó (a+b-c)2 =
Có 7a=9b=21c
\(\Rightarrow\frac{a}{\frac{1}{7}}=\frac{b}{\frac{1}{9}}=\frac{c}{\frac{1}{21}}\)Như thế này bạn làm dk chưa
(a+b-c)^2=1521 nhé bn!!
Mik làm r. mình nha <3
Kết quả cũng bằng 1521 giống Nguyễn Vũ Yến Nhi
Cho 7a = 9b = 21c và a - b + c = 15. Khi đó (a + b - c)2 =...
=>a/7=b/9=>a/7=7b/63=>a/49=b/63
=>b/21=c/9=>3b/63=c/9=>b/63=c/27
ta có:a/49=b/63=c/27
áp dụng tính chất của dãy các tỉ số bằng nhau ......tự làm nhé
Cho các số a,b,c thỏa mãn 7a=9b=21c và a-b+c=-15.Khi đó a+b+c bằng :
A.19
B.15
C.-57
D.57
\(7a=9b=21c\Rightarrow\frac{7a}{63}=\frac{9b}{63}=\frac{21c}{63}\Leftrightarrow\frac{a}{9}=\frac{b}{7}=\frac{c}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{9}=\frac{b}{7}=\frac{c}{3}=\frac{a-b+c}{9-7+3}=\frac{-15}{5}=-3\)
\(\Leftrightarrow\frac{a}{9}=-3\Rightarrow a=-27\)
\(\frac{b}{7}=-3\Rightarrow b=-21\)
\(\frac{c}{3}=-3\Rightarrow c=-9\)
\(\Rightarrow a+b+c=-27-21-9=-57\)
7a=9b=21c và a-b+c=15. Khi đó (a+b-c)2=...
\(7a=9b=21c=\frac{a}{\frac{1}{7}}=\frac{b}{\frac{1}{9}}=\frac{c}{\frac{1}{21}}\) Áp dụng TC DTSBN ta có :
\(\frac{a}{\frac{1}{7}}=\frac{b}{\frac{1}{9}}=\frac{c}{\frac{1}{21}}=\frac{a-b+c}{\frac{1}{7}-\frac{1}{9}+\frac{1}{21}}=\frac{15}{\frac{5}{63}}=189\)
\(\Rightarrow a=27;b=21;c=9\)
\(\Rightarrow\left(a+b-c\right)^2=\left(27+21-9\right)^2=1521\)
cho 3 so tu nhien co uoc chung la 12. 3 so do ti le nghich voi 4;6;15. so lon nhat la
Tìm các số a, b, c biết rằng: a) a/ 3 = b/ 2 , b/ 7 = c /5 và 3a – 7b + 5c = 30 b) 7a = 9b = 21c và a – b + c = – 15
a, Ta có: \(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{21}=\frac{b}{14}=\frac{c}{15}=\frac{3a-7b+5c}{63-98+75}=\frac{30}{40}=\frac{3}{4}\)
\(a=\frac{63}{4};b=\frac{42}{4};c=\frac{45}{4}\)
b, Ta có : \(7a=9b=21c\Rightarrow\frac{7a}{63}=\frac{9b}{63}=\frac{21c}{63}\Rightarrow\frac{a}{9}=\frac{b}{7}=\frac{c}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{9}=\frac{b}{7}=\frac{c}{3}=\frac{a-b+c}{9-7+3}=-\frac{15}{5}=-3\Rightarrow a=-27;b=-21;c=-9\)
Tìm các số a, b, c biết rằng: a) a 3 = b 2 , b 7 = c 5 và 3a – 7b + 5c = 30 b) 7a = 9b = 21c và a – b + c = – 15
7a = 9b =21c và a-b+c= -15. Tính a,b,c
Theo đề bài ta có:
\(7a=9b=21c\Rightarrow\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}\) và \(ab+c=-15\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}=\dfrac{a-b+c}{\dfrac{1}{7}-\dfrac{1} {9}+\dfrac{1}{21}}=\dfrac{-15}{\dfrac{5}{63}}=-189\)
\(\dfrac{a}{\dfrac{1}{7}}=-189\Rightarrow a=-189.\dfrac{1}{7}=-27\)
\(\dfrac{b}{\dfrac{1}{9}}=-189\Rightarrow b=-189.\dfrac{1}{9}=-21\)
\(\dfrac{c}{\dfrac{1}{21}}=-189\Rightarrow c=-189.\dfrac{1}{21}=-9\)
Vậy..
Theo đề bài ta có:
\(7a=9b=21c\Rightarrow\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}\) và \(a-b+c=-15\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}=\dfrac{a-b+c}{\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{21}}=\dfrac{-15}{\dfrac{5}{63}}=-189\)
\(\dfrac{a}{\dfrac{1}{7}}=-189\Rightarrow a=-189.\dfrac{1}{7}=-27\)
\(\dfrac{b}{\dfrac{1}{9}}=-189\Rightarrow b=-189.\dfrac{1}{9}=-21\)
\(\dfrac{c}{\dfrac{1}{21}}=-189\Rightarrow c=-189.\dfrac{1}{21}=-9\)
Vậy...........................
Câu 1: Tìm a,b,c biết:
7a = 9b = 21c và a - b + c = -15
Câu 2: Cho b\(^2\) = a.c Chứng minh rằng \(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)
1.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(7a=9b=21c=\dfrac{a}{\dfrac{1}{7}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{21}}=\dfrac{a-b+c}{\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{21}}=\dfrac{15}{\dfrac{5}{63}}=15\cdot\dfrac{63}{5}=189\\ \Rightarrow\left\{{}\begin{matrix}7a=189\\9b=189\\21c=189\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=189:7\\b=189:9\\c=189:21\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=27\\b=21\\c=9\end{matrix}\right.\)
2.
\(b^2=ac\Rightarrow\dfrac{b}{c}=\dfrac{a}{b}\)
\(\dfrac{b}{c}=\dfrac{a}{b}=k\Rightarrow b=ck;a=bk\)
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{b^2k^2+c^2k^2}{b^2+c^2}=\dfrac{k^2\left(b^2+c^2\right)}{b^2+c^2}=k^2\\ \dfrac{a}{c}=\dfrac{bk}{c}=\dfrac{ck\cdot k}{c}=k^2\\ \Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)
Câu 2:
Ta có:
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\)
\(\RightarrowĐPCM\)
Câu 1:
7a = 9b = 21c
\(\Rightarrow\dfrac{a}{21}=\dfrac{b}{9}=\dfrac{c}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{21}=\dfrac{b}{9}=\dfrac{c}{7}=\dfrac{a-b+c}{21-9+7}=\dfrac{-15}{19}\)
\(\Rightarrow\left\{{}\begin{matrix}a=-15:19.21\\b=-15:19.9\\c=-15:19.7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-16\dfrac{11}{19}\\b=-7\dfrac{2}{19}\\c=-5\dfrac{10}{19}\end{matrix}\right.\)
Bài 1 : Tìm các số a,b,c biết :
a) a phần 3 = b phần 2 ; b phần 7 = c phần 5 và 3x - 7b - 5c = 30
b) 7a = 9b = 21c và a - b + c = -15
Bài 2 : Tìm x,y,z biết :
a) x : y : z = 5 : 3 : 4 và x + 2y - z = -121
b) 5x = 2y ; 3y = 5z và x + y + z = -976
c) x phần 3 = y phần 12 = z phần 5 và xyz =22,5
d) x phần 3 = y phần 7 = z phần và x^2 - y^2 + z^2 = -60
\(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)
Vì \(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)
=> \(\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)(1)
\(\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
Theo tính chất dãy tỉ số bằng nhau:
\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\Rightarrow\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)
Do đó: \(\Rightarrow\hept{\begin{cases}\frac{a}{21}=2\Rightarrow a=42\\\frac{b}{14}=2\Rightarrow b=28\\\frac{c}{10}=2\Rightarrow c=20\end{cases}}\)
Vậy: a = 42
b = 28
c = 20
Bài 1:
a)
Ta có: \(\frac{a}{3}=\frac{b}{2}\)
\(\Rightarrow\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}\)
Và: \(\frac{b}{7}=\frac{c}{5}\)
=> \(\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}\)
=> \(\frac{b}{14}=\frac{c}{10}\)
Do đó: \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau; ta có:
\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)\(=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b-5c}{63-98-50}\)\(=\frac{30}{-85}\)\(=-\frac{6}{17}\)
+) Với \(\frac{a}{21}=-\frac{6}{17}\Rightarrow a=-\frac{126}{17}\)
+) Với \(\frac{b}{14}=-\frac{6}{17}\Rightarrow b=-\frac{84}{17}\)
+)Với \(\frac{c}{10}=-\frac{6}{17}\Rightarrow c=-\frac{60}{17}\)
Vậỵ:..........
b)
Ta có: 7a = 9b = 21c
=> 7a/63 = 9b/63 = 21c/63
=> a/9 = b/7 = c/3
Áp dụng tính chất dãy tỉ số bằng nhau; ta có:
a/9 = b/7 = c/3 = (a-b+c) / (9-7+3) = -15/5 = -3
+) a/9 = -3 => a = -27
+) b/7 = -3 => b = -21
+) c/3 = -3 => c = -9
Vậy:..............
Bài 2:
a) Theo bài: x:y:z = 5:3:4
=> x/5 = y/3 = z/4
Áp dụng tính chất dãy tiwr số bằng nhau; ta có:
x/5 = y/3 = z/4 = ( x + 2y -z ) / ( 5 + 2.5 - 4 ) = -121 / 11 = -11
+) Với x/5 = -11 => x=-55
+) Với y/3 = -11 => y = -33
+) Với z/4 = -11 => z = -44
Vậy:......
b) _ Tương tự câu a) ở bài 1
c)
Ta đặt: x/3 = y/12 = z/5 = k ( \(k\inℤ\))
=> \(\hept{\begin{cases}x=3k\\y=12k\\z=5k\end{cases}}\)
Theo bài: xyz = 22,5
=> 3k.12k.5k = 22,5
=> 180.k3 = 22,5
=> k3 = 1/8 = (1/2)3
=> k = 1/2
Với k = 1/2 => x = 3/2; y = 6; z = 5/2
Vậy:..........
d)
\(\frac{a}{\frac{1}{7}}=\frac{b}{\frac{1}{9}}=\frac{c}{\frac{1}{21}}\)
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{a}{\frac{1}{7}}=\frac{b}{\frac{1}{9}}=\frac{c}{\frac{1}{21}}=\frac{a-b+c}{\frac{1}{7}-\frac{1}{9}+\frac{1}{21}}=-\frac{15}{\frac{5}{63}}=-189\)
còn lại tự làm =)
bài 2
\(x:y:z=5:3:4\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{x+2y-z}{5+6-4}=-\frac{121}{7}\)
đến đây tự tính, mk hướng dẫn cách làm thôi =)