So sanh : 999^10 va99^100
so sanh: 9920va 99910
\(99^{20}=99^{2\cdot10}=\left(99^2\right)^{10}=9801^{10}\)
Vì \(9801^{10}>999^{10}\)
Nên \(99^{20}>999^{10}\)
9920 = 992.10 = (992)10 = 980110
Có 9801 > 999
=> 980110 > 99910
=> 9920 > 99910
SO SANH : a) 18/87 va 17 /98
b) 999/100 va 998/999
Trả lời:
a)\(\frac{18}{87}>\frac{17}{98}\)
b)\(\frac{999}{100}>\frac{998}{999}\)
Hok tốt!
bn ơi giải thích rõ ràng hộ mình đc ko
Vì \(\frac{18}{87}>\frac{17}{87}\)
Mà \(\frac{17}{87}>\frac{17}{98}\)( khi so sánh hai p/s có tử giống nhau có mẫu nào lớn hơn thì bé hơn và ngược lại )
Dựa vào tính chất bắc cầu
=> \(\frac{18}{87}>\frac{17}{87}>\frac{17}{98}\)
=>\(\frac{18}{87}>\frac{17}{98}\)
Vậy ...
b,.....
1024 mu 10 va 10 mu 100 hay so sanh
102410 = (210)10 = 2100
Vì 2100 < 10100 nên 102410 < 10100
sO sanh 2^100 và 10^31
a)1.2+2.3+3.4+...+19.20
b)9+99+999+...+999...9(100 so 9)
c)999...9x222...2(100 so 9 va 100 so 2)
SOS!!!
a) \(1.2+2.3+3.4+...+19.20\)
\(=\dfrac{20.\left(20+1\right).\left(20+2\right)}{3}\)
\(=3080\)
b) \(9+99+999+...+999...9\left(100so9\right)\)
\(\)\(=\left(10-1\right)+\left(100-1\right)+\left(1000-1\right)+...+\left(1000...0-1\right)\left(99so0\right)\)
\(=\left(10+10^2+10^3+...10^{99}\right)+\left(-1\right).100\)
\(=\left(1+10+10^2+10^3+...10^{99}\right)+\left(-1\right).101\)
\(=\dfrac{10^{99+1}-1}{99-1}-101\)
\(=\dfrac{10^{100}-1}{98}-101\)
\(=\dfrac{10^{100}-9899}{98}\)
c) \(999.9x222...2\) (100 số 9; 100 số 2)
\(9x2=18\)
\(99x22=2178\)
\(999x222=\text{221778}\)
\(9999x2222=22217778\)
\(99999x22222=2222177778\)
\(.........\)
Theo quy luật trên ta có 100 số 9 nhân 100 số 2:
\(999.9x222...2=222...21777...78\) (99 sô 2; 1 số 1; 99 số 7; 1 số 8)
A, 1.2 + 2. 3 + 3. 4 + ....+ 19 . 20
⇒\(\dfrac{20.\left(20+1\right).\left(20+2\right)}{3}\)
⇒3080
vậy kết quả câu a, là 3080
Cho M=1/2.3/4.5/6...99.100 va N=2/3.4/5.6/7.... 100/101 va N=2/3.4/5.6/7..100/101
a) So sanh M va N b) Tinh M.N c) So sanh M va 1/10
so sanh A=1030VA B=2100
A = 1030 =(103)10 = 100010
B = (210)10 =102410
Vì 1000 < 1024
=> A <B
So sanh : \(10^{100}\)va \(2^{1000}\)
\(2^{1000}=\left(2^{10}\right)^{100}=1024^{100}>10^{100}\)
10^100 = (2 x 5) ^100 = 2^100 x 5 ^100
2^ 1000 = 2^ 100x 10 = 2^100 x 2^ 10
vì 2 ^10 < 5^ 100
=> ...............
=> 10^100 < 2^1000
sorry cac ban nha
minh chi co mot nick nen chi h dc 1 ban
\(\dfrac{2^{19}+27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
so sanh
a) \(5^{20}và2550^{10}\)
b)\(999^{10}và999999^5\)
c)\(\left(\dfrac{-1^{300}}{5}\right)và\left(\dfrac{-1^{500}}{3}\right)\)
\(\dfrac{2^{19}+27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\dfrac{2^{19}+\left(3^3\right)^3+5.3.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.4\right)^{10}}\)
\(=\dfrac{2^{19}.3^9+3.5.2^{18}.3^8}{3^9.2^9.2^{10}+3^{10}.4^{10}}\)
\(=\dfrac{2^{19}.3^9+5.2^{18}.3^9}{3^9.2^{19}+3^{10}.\left(2^2\right)^{10}}\)
\(=\dfrac{2^{18}.3^9.\left(2.5\right)}{3^9.2^{19}+3^{10}.2^{20}}\)
\(=\dfrac{2^{18}.3^9.7}{2^{19}.3^9.\left(1+3.2\right)}\)
\(=\dfrac{7}{2\left(1+6\right)}\)
\(=\dfrac{7}{2.7}\)
\(=\dfrac{1}{2}\)
a) \(5^{20}và2550^{10}\)
\(5^{20}=\left(5^2\right)^{10}=25^{10}< 2550^{10}\)
=> \(5^{20}< 2550^{10}\)
b) \(999^{10}và999999^5\)
\(999^{10}=\left(999^2\right)^5=1998^5< 999999^5\)
=> \(999^{10}< 999999^5\)
c) \(\left(\dfrac{-1^{300}}{5}\right)và\left(\dfrac{-1^{500}}{3}\right)\)
\(\left(\dfrac{-1^{300}}{5}\right)=\dfrac{-1}{5}\)
\(\left(\dfrac{-1^{500}}{3}\right)=\dfrac{-1}{3}\)
\(\dfrac{-1}{5}=\dfrac{-3}{15}\)
\(\dfrac{-1}{3}=\dfrac{-5}{15}\)
=> \(\dfrac{-3}{15}>\dfrac{-5}{15}\)
=> \(\left(\dfrac{-1^{300}}{5}\right)>\left(\dfrac{-1^{500}}{3}\right)\)