Tìm cắp số nguyên (x,y) thỏa mãn : \(2\left|x-2012\right|+3=\frac{6}{\left|y-2013\right|+2}\)
Cho 3 số x;y;z thỏa mãn: \(\frac{x}{2012}=\frac{y}{2013}=\frac{z}{2014}\)
Chứng minh rằng \(\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)
Đặt \(\frac{x}{2012}=\frac{y}{2013}=\frac{z}{2014}=k\)=> \(\hept{\begin{cases}x=2012k\\y=2013k\\z=2014k\end{cases}}\)
khi đó, ta có: (x - z)3 = (2012k - 2014k)3 = (-2k)3 = -8k3
8(x - y)2(y - z) = 8(2012k - 2013k)2(2013 - 2014k) = 8(-k)2.(-k) = -8k3
=> (x - z)3 = 8(x - y)2(y - z)
Tìm số nguyên \(x\)nhỏ nhất thỏa mãn:
\(\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\right).\left(x-2013\right)>3x-6039\)
Tìm cặp số nguyên x,y thỏa mãn : \(\left(x+y-3\right)^2+6=\frac{12}{\left|y-1\right|+\left|y-3\right|}\)
Ta có\(\left(x+y-3\right)^2+6=\frac{12}{\left|y-1\right|+\left|y-3\right|}\left(1\right)\)
:\(\frac{12}{\left|y-1\right|+\left|y-3\right|}=\frac{12}{\left|y-1\right|+\left|3-y\right|}\le\frac{12}{\left|y-1+3-y\right|}=\frac{12}{2}=6\left(2\right)\)
\(\left(x+y-3\right)^2+6\ge6\left(3\right)\)
Từ (1),(2) và (3)
Suy ra dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y-3=0\\\left(y-1\right)\left(3-y\right)\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}1\le y\le3\\x+y=3\end{cases}}\)
Với y=1 thì x=2
Với y=2 thì x=1
Với y=3 thì x=0
Vậy....................
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
post từng câu một thôi bn nhìn mệt quá
1) Cho x,y >0 thỏa : \(\left(x+\sqrt{x^2+2017}\right)\)\(\left(y+\sqrt{y^2+2017}\right)\)\(=2017\)
Tính A= \(x^{2017}+y^{2017}+2017\)
2) Tìm x,y,z biết:
\(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
3) Cho a,b,c là các số hữu tỉ khác nhau. Cmr:
\(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\)là một số hữu tỉ.
Ta có : \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)
\(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)
nhân theo vế của ( 1 ) ; ( 2 ) , ta có :
\(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)
\(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)
rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :
\(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)
\(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\)
\(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)
A = 2017
( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :) )
2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)
\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)
\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)
Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)
\(\Leftrightarrow x=2015;y=2016;z=2017\)
3/ \(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\)
\(=\sqrt{\frac{\left(a-b\right)^2\left(b-c\right)^2+\left(b-c\right)^2\left(c-a\right)^2+\left(a-b\right)^2\left(c-a\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}\)
\(=\sqrt{\frac{\left(a^2+b^2+c^2-ab-bc-ca\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}\)
\(=|\frac{a^2+b^2+c^2-ab-bc-ca}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}|\) là số hữu tỉ
cho 3 số x,y,z thỏa mãn đồng thời
\(3x-2y-2\sqrt{y+2012}+1=0\)
\(3y-2z-2\sqrt{z-2013}+1=0\)
\(3z-2x-2\sqrt{x-2}-2=0\)
tính giá trị của biểu thức P=\(\left(x-4\right)^{2011}+\left(y+2012\right)^{2012}+\left(z-2013\right)^{2013}\)
- Bạn làm được bài này chưa bạn?
đặt \(\hept{\begin{cases}A=3x-2y-2\sqrt{y+2012}+1=0\\B=3y-2z-.....\\C=3z-2x.....\end{cases}}.\)
vì a=b=c=0
Suy ra A+B+C=0
A+B+c= \(\left(x\right)+\left(y\right)+\left(z\right)-2\sqrt{y+2012}-2\sqrt{z-2013}-2\sqrt{x-2}\) " rút gọn làm tắt "
đến đây ta thêm 3-3 , 2012-2012 , 2013-2013 , 2-2 vào biểu thức rồi dùng hằng đẳng thức ta được
\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2012}-1\right)^2+\left(\sqrt{z-2013}-1\right)^2+2013-2012+2-3=0\)
\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2012}-1\right)^2+\left(\sqrt{z-2013}-1\right)^2=0\) rút gọn
\(\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y+2012}=1\\\sqrt{z-2013}=1\end{cases}}\)
thay vào P ta được
\(P=\left(3-4\right)^{2011}+\left(-2011+2012\right)^{2012}+\left(2014-2013\right)^{2013}\)
\(P=-1+1+1=1\)
Tìm tất cả các cặp số (x;y) thỏa mãn :\(\left(2x-y+7\right)^{2012}+|x-3|^{2013}\le0\)
\(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}\le0\)
Vì \(\left(2x-y+7\right)^{2012}\ge0\forall x;y\)và \(\left|x-3\right|\ge0\Leftrightarrow\left|x-3\right|^{2013}\ge0\forall x\)
\(\Rightarrow\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}=0\)
Dấy "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y+7=0\\x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=13\\x=3\end{cases}}}\)
Vậy....
C1: Số các cặp số hữu tỉ (x;y;z) thỏa mãn:
x(x+y+z)=4 ; y(x+y+z)=6 ; z(x+y+z)=6
C2: Số cặp x;y nguyên thỏa mãn:
$x^2+\left(5y\right)^2=2013$x2+(5y)2=2013
C3: tam giác ABC : A=90 độ BC=10cm B=30 độ BAD=15 độ
Tính CD
C4: cho $P=\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+...+2014}\right)$P=(1−11+2 ).(1−11+2+3 )...(1−11+...+2014 )
khi đó $\frac{2014}{2016}.P=$20142016 .P=...
Mình đang rất cần. Cảm ơn các bạn trước (nhớ giải ra luôn)
C1=2
C2=không có đề
c3=lấy D ở đâu ra vậy(gt không cho)
c4=cho
khi đó là gì
chi 3 số x,y,z thỏa mãn : \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}\)
C/M: \(4\left(x-y\right)\left(y-z\right)=\left(z-x\right)^2\)