Những câu hỏi liên quan
MH
Xem chi tiết
MH
Xem chi tiết
TC
11 tháng 8 2021 lúc 16:03

Bạn nên đánh lại rõ ràng hơn, có phần hỗ trợ để đánh công thức toán bạn nhé, hoặc bạn chụp hình rồi gửi lên cũng được.

Bình luận (0)
HM
Xem chi tiết
NM
2 tháng 12 2021 lúc 7:09

Câu 1

\(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\\ \Leftrightarrow N=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{4\left(a+b\right)^2}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)

Dấu \("="\Leftrightarrow a=b=\dfrac{1}{2}\)

Câu 2:

\(P=a+\dfrac{1}{a}+2b+\dfrac{8}{b}+3c+\dfrac{27}{c}+4\left(a+b+c\right)\\ P\ge2\sqrt{1}+2\sqrt{16}+2\sqrt{81}+4\cdot6=2+8+18+4=32\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)

Câu 3: Cho a,b,c là các số thuộc đoạn [ -1;2 ] thõa mãn \(a^2+b^2+c^2=6.\) CMR : \(a+b+c>0\) - Hoc24

Bình luận (0)
HM
Xem chi tiết
NM
24 tháng 11 2021 lúc 22:12

\(1,\text{Áp dụng Mincopxki: }\\ Q\ge\sqrt{\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2}\ge\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\\ \text{Dấu }"="\Leftrightarrow a=b\)

Bình luận (2)
NM
24 tháng 11 2021 lúc 22:14

\(2,\text{Áp dụng BĐT Cauchy-Schwarz: }\\ P\ge\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}=\dfrac{9}{\left(a+b+c\right)^2}\ge\dfrac{9}{1}=9\\ \text{Dấu }"="\Leftrightarrow a=b=c=\dfrac{1}{3}\)

Bình luận (0)
MH
Xem chi tiết
EC
9 tháng 8 2021 lúc 15:08

câu hỏi? 

Bình luận (0)
MH
9 tháng 8 2021 lúc 15:11

Tìm min

 

Bình luận (0)
HM
Xem chi tiết
NM
24 tháng 11 2021 lúc 21:59

\(1,\) Áp dụng BĐT: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\text{ và }\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Dấu \("="\Leftrightarrow x=y\)

\(A=\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2+17\ge\dfrac{1}{2}\left(a+b+\dfrac{1}{a}+\dfrac{1}{b}\right)^2+17\\ A\ge\dfrac{1}{2}\left(1+\dfrac{1}{a}+\dfrac{1}{b}\right)^2+17\ge\dfrac{1}{2}\left(1+\dfrac{4}{a+b}\right)^2+17=\dfrac{25}{2}+17=\dfrac{59}{2}\\ \text{Dấu }"="\Leftrightarrow\left\{{}\begin{matrix}a+\dfrac{1}{a}=b+\dfrac{1}{b}\\a+b=1\end{matrix}\right.\Leftrightarrow a=b=\dfrac{1}{2}\)

Bình luận (0)
NM
24 tháng 11 2021 lúc 22:32

\(2,\text{Đặt }A=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\\ \Leftrightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2\left(\dfrac{xy^2z}{xz}+\dfrac{xyz^2}{xy}+\dfrac{x^2yz}{yz}\right)\\ \Leftrightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2\left(x^2+y^2+z^2\right)\\ \Leftrightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+6\)

Áp dụng Cosi: \(\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}\ge2y^2\)

CMTT: \(\left\{{}\begin{matrix}\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}\ge2z^2\\\dfrac{x^2y^2}{z^2}+\dfrac{x^2z^2}{y^2}\ge2x^2\end{matrix}\right.\)

Cộng VTV \(\Leftrightarrow A^2\ge2\left(x^2+y^2+z^2\right)+6=12\\ \Leftrightarrow A\ge2\sqrt{3}\)

Dấu \("="\Leftrightarrow x=y=z=1\)

Bình luận (0)
H24
Xem chi tiết
KB
8 tháng 4 2022 lúc 16:31

ĐK : a;b;c > 0 

Ta có : \(ab+bc+ac=1\) \(\Leftrightarrow c\left(a+b\right)=1-ab\Leftrightarrow c=\dfrac{1-ab}{a+b}\)

Khi đó :  \(c^2+1=\left(\dfrac{1-ab}{a+b}\right)^2+1\)  \(=\dfrac{\left(ab\right)^2+1+a^2+b^2}{\left(a+b\right)^2}=\dfrac{\left(a^2+1\right)\left(b^2+1\right)}{\left(a+b\right)^2}\)

\(\Rightarrow\dfrac{1}{c^2+1}=\dfrac{\left(a+b\right)^2}{\left(a^2+1\right)\left(b^2+1\right)}\) 

Ta có : \(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}=\dfrac{ab^2+a^2b+a+b}{\left(a^2+1\right)\left(b^2+1\right)}=\dfrac{\left(ab+1\right)\left(a+b\right)}{\left(a^2+1\right)\left(b^2+1\right)}\)

Suy ra : \(A=\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}-\dfrac{1}{c^2+1}=\dfrac{\left(a+b\right)\left(ab+1-a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)}=\dfrac{\left(a+b\right)\left(1-a\right)\left(1-b\right)}{\left(a^2+1\right)\left(b^2+1\right)}\)

AD BĐT Cauchy ta được :  \(\left(a+b\right)\left[\left(1-a\right)\left(1-b\right)\right]\le\dfrac{\left[a+b+\left(1-a\right)\left(1-b\right)\right]^2}{4}=\dfrac{\left(1+ab\right)^2}{4}\)

\(\left(a^2+1\right)\left(b^2+1\right)\ge\left(ab+1\right)^2\)  ( theo BCS )

Suy ra : \(A\le\dfrac{1}{4}\)

Bình luận (0)
TL
Xem chi tiết
ML
8 tháng 8 2015 lúc 13:25

Một số bất đẳng thức thường được dùng (chứng minh rất đơn giản)

Với a, b > 0, ta có: 

\(a^2+b^2\ge2ab\)

\(\left(a+b\right)^2\ge4ab\)

\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu "=" của các bất đẳng thức trên đều xảy ra khi a = b.

Phân phối số hạng hợp lí để áp dụng Côsi

\(1\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)

\(\ge6\)

Dấu "=" xảy ra khi a = b = 1/2.

\(2\text{) }P\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge4\)

\(3\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{1}{4ab}\)

\(\ge\frac{1}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{1}{\left(a+b\right)^2}\ge1+2+1=4\)

Bình luận (0)
LT
Xem chi tiết
LT
7 tháng 11 2021 lúc 10:43

không cs số 0 đâu 

Bình luận (0)
NM
7 tháng 11 2021 lúc 10:45

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Sửa: \(\dfrac{3a^2+10b^2-ab}{7a^2+b^2+5ab}=\dfrac{3b^2k^2+10b^2-b^2k}{7b^2k^2+b^2+5b^2k}=\dfrac{b^2\left(3k^2+10-k\right)}{b^2\left(7k^2+1+5k\right)}=\dfrac{3k^2+10-k}{7k^2+1+5k}\left(1\right)\)

\(\dfrac{3c^2+10d^2-cd}{7c^2+d^2+5cd}=\dfrac{3d^2k^2+10d^2-d^2k}{7d^2k^2+d^2+5d^2k}=\dfrac{d^2\left(3k^2+10-k\right)}{d^2\left(7k^2+1+5k\right)}=\dfrac{3k^2+10-k}{7k^2+1+5k}\left(2\right)\)

\(\left(1\right)\left(2\right)\RightarrowĐpcm\)

Bình luận (0)