Những câu hỏi liên quan
HY
Xem chi tiết
H24
Xem chi tiết
TP
17 tháng 6 2019 lúc 22:49

\(C=1983-x^2-3y^2+2xy-10x+14y\)

\(C=-\left(x^2+3y^2-2xy+10x-14y-1983\right)\)

\(C=-\left(x^2-2xy+y^2+2y^2+10x-14y-1983\right)\)

\(C=-\left[\left(x-y\right)^2+2\cdot\left(x-y\right)\cdot5+25+2y^2-4y+2-2010\right]\)

\(C=-\left[\left(x-y+5\right)^2+2\left(y-1\right)^2-2010\right]\)

\(C=2010-\left[\left(x-y+5\right)^2+2\left(y-1\right)^2\right]\le2010\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=1\end{matrix}\right.\)

Bình luận (0)
AA
Xem chi tiết
ND
8 tháng 10 2017 lúc 9:47

Ta có:

\(A=1993-x^2-3y^2+2xy-10x+14y\\ =2020-\left(x^2-2xy+y^2\right)-10\left(x-y\right)-25-\left(2y^2-4y+2\right)\\ =2020-\left(x-y-5\right)^2-2\left(y-1\right)^2\)

Với mọi x; y thì \(2020-\left(x-y-5\right)^2-2\left(y-1\right)^2\ge2020\)

Để A=2020 thì

\(\left\{{}\begin{matrix}x-y=5\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=1\end{matrix}\right.\)

Vậy...

Bình luận (4)
DV
Xem chi tiết
DV
7 tháng 12 2021 lúc 23:13

Giups mk vs ạ ai nhanh mk tick nha

Bình luận (0)
AH
8 tháng 12 2021 lúc 0:55

Lời giải:
\(x^2+3y^2+10x-14y-2xy=11\)

$\Leftrightarrow (x^2-2xy+y^2)+2y^2+10x-14y=11$

$\Leftrightarrow (x-y)^2+10(x-y)+25+(2y^2-4y+2)=38$

$\Leftrightarrow (x-y+5)^2+2(y-1)^2=38$

$\Rightarrow (x-y+5)^2=38-2(y-1)^2\leq 38$

$\Rightarrow -\sqrt{38}\leq x-y+5\leq \sqrt{38}$

$\Leftrightarrow -\sqrt{38}-5\leq x-y\leq \sqrt{38}-5$
Vậy $A_{\min}=-\sqrt{38}-5$ và $A_{\max}=\sqrt{38}-5$

 

Bình luận (0)
HY
Xem chi tiết
LH
30 tháng 10 2016 lúc 8:30

Xét mẫu: \(^{-\left(x^2-2xy+10x+3y^2-14y-1983\right)}\)

\(=-\left(x^2-2x.\left(y-5\right)+\left(y-5\right)^2-\left(y-5\right)^2+3y^2-14y-1983\right)\)

\(=-\left(\left(x-y+5\right)^2-\left(y^2-10y+25\right)+3y^2-14y-1983\right)\)

\(=-\left(\left(x-y+5\right)^2-y^2+10y-25+3y^2-14y-1983\right)\)

\(=-\left(\left(x-y+5\right)^2+2y^2-4y-2008\right)\)

\(=-\left(\left(....\right)^2+2.\left(y^2-2y+1\right)-2010\right)\)

\(=\left(\left(...\right)^2+2.\left(y-1\right)^2-2010\right)\)

Mình không biết là đề có sai sót gì không, theo mình thì đến đây chứng minh được cái trong ngoặc >= 0 nhưng cái này lại >= -2010, bạn cứ soát lại nha nhỡ đâu có chỗ mình nhầm. Cách làm này là đúng, k cho mình nha

Bình luận (0)
LH
30 tháng 10 2016 lúc 8:19

Bạn chờ mình chút, bài này hơi dài

Bình luận (0)
NT
Xem chi tiết
H24
28 tháng 7 2018 lúc 19:45

\(E=1983-x^2-3y^2+2xy-10x+14y\)

\(-E=x^2+3y^2-2xy+10x-14y-1983\)

\(-E=\left(x^2-2xy+y^2\right)+2y^2+10x-14y-1983\)

\(-E=\left[\left(x-y\right)^2+2\left(x-y\right).5+25\right]\)\(+2\left(y^2-2y+1\right)+1956\)

\(-E=\left(x-y+5\right)^2+2\left(y-1\right)^2+1956\)

Do  \(\left(x-y+5\right)^2\ge0\forall x;y\)

             \(2\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow-E\ge1956\Leftrightarrow E\le-1956\)

Dấu "=" xảy ra khi :  \(\hept{\begin{cases}x-y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=1\end{cases}}\)

Vậy ...

Bình luận (0)
LH
Xem chi tiết
NT
14 tháng 4 2020 lúc 9:58

gợi ý nhé:

[-(x-y)2-10(x-y)-25] - 2(y-1)+ 2010

= -[(x-y)+5]2  - 2(y-1)+ 2010

tự cậu suy ra MAX nhé

chưa hiểu thì hỏi nhé

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
DK
Xem chi tiết
MT
14 tháng 11 2018 lúc 19:31

Ta có \(x1-\frac{1}{9}=x2-\frac{2}{8}=...=x9-\frac{9}{1}\)

\(=\frac{x1-1}{9}=\frac{x2-2}{8}=\frac{x3-3}{7}=...=\frac{x9-9}{1}\)

\(\frac{x1-1+x2-2+x3-3+...+x9-9}{9+8+7+...+1}\)

\(=\frac{\left(x1+x2+x3+...+x9\right)-\left(1+2+3+...+9\right)}{9+8+7+....+1}\)

=\(\frac{90-45}{45}=\frac{45}{45}=1\)

=> \(\hept{\begin{cases}\begin{cases}x1=10\\x2=10\end{cases}\\.....\\x9=10\end{cases}}\)

Bình luận (0)