Tim gia tri lon nhat cua bieu thuc
P=\(\frac{14-X}{4-X}\)(X thuoc Z)
Tim gia tri lon nhat cua bieu thuc : A = 37 - |x - 8| voi x thuoc Z
A=37-|x-8|
Ta có:|x-8| >=0 với mọi x thuộc Z
=> 37-|x-8| =< 37 hay A =< 37
Dấu "=" <=> |x-8|=0 <=> x-8=0 <=> x=8
Vậy MaxA=37 đạt được khi x=8
tim gia tri nho nhat cua bieu thuc P = 14-x/4-x ; ( x thuoc z) khi do xnhan gia tri nguyen nao
Ta có:﴾các số như 14‐x/4‐x đc vt dưới dạng p số nha﴿
14‐x/4‐x=10+4‐x/4‐x=10/4‐x+4‐x/4‐x=﴾10/4‐x﴿+1
Để ﴾10/4‐x﴿+1 đạtGTNN=>10/4‐x đạt GTNN =>4‐x đạt GTLN
mà ‐x<_﴾bé hơn hoặc bằng﴿0
=> 4‐x<_4
Vì 4‐x đạt GTLN =>4‐x=4=>x=0
khi đó, thay vào biểu thức, ta có:
14‐0/4‐0=14/4=3,5
Vậy GTNN của P bằng 3,5<=>x=0
\(P=\frac{14-x}{4-x}=\frac{10+4-x}{4-x}=\frac{10}{4-x}+1\)
P đạt giá trị nhỏ nhất khi \(\frac{10}{4-x}\) nhỏ nhất <=> 4-x lớn nhất < 0 <=> 4-x=-1 <=> x=5
Tim gia tri nho nhat cua bieu thuc: P=|x|+7
(x€Z)
Tim gia tri lon nhat cua bieu thuc :Q=9-|x|
1) Ta có: P = |x| + 7 > hoặc = 7
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Min P = 7 khi và chỉ khi x = 0
2) Ta có: Q = 9 - |x| < hoặc = 9
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Max Q = 9 khi và chỉ khi x = 0
a)Ta có:\(\left|x\right|\ge0\Rightarrow P=\left|x\right|+7\)\(\ge7\)
Đẳng thức xảy ra khi: |x| = 0 => x = 0
Vậy giá trị nhỏ nhất của p là 7 khi x = 0
b) Ta có: \(\left|x\right|\ge0\Rightarrow-\left|x\right|\le0\Rightarrow Q=9-\left|x\right|=9+\left(-\left|x\right|\right)\le9\)
Đẳng thức xảy ra khi: -|x| = 0 => x = 0
Vậy giá trị lớn nhất của Q là 9 khi x = 0
1﴿ Ta có: P = |x| + 7 > hoặc = 7
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Min P = 7 khi và chỉ khi x = 0
2﴿ Ta có: Q = 9 ‐ |x| < hoặc = 9
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Max Q = 9 khi và chỉ khi x = 0
k nha bị âm r
Tim x thuoc so nguyen sao cho bieu thuc A=14-x/4-x dat gia tri lon nhat
tim gia tri lon nhat cu bieu thuc
a=5- gia tri tuyet doi cuax+1( voi x thuoc z)
\(A=5-|x+1|\)
Vì \(|x+1|\ge0\)=> \(A=5-|x+1|\le5\)
Dấu '=' xảy ra khi:
\(|x+1|=0\)=> x + 1 = 0 => x = -1
Vậy Amax = 5 khi x = -1
Chúc em học tốt!!!
\(A=5-\left|x+1\right|\)
Vì \(\left|x+1\right|\ge0\Rightarrow-\left|x+1\right|\le0\)
\(\Rightarrow A\le5\)
Dấu \("="\) xảy ra khi \(-\left|x+1\right|=0\Leftrightarrow\left|x+1\right|=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy \(A_{max}=5\Leftrightarrow x=-1\)
Tim x thuoc Z de bieu thuc sau day dat gia tri lon nhat :
B= 2015x+1/2016x-2016 (x thuoc Z; x khac 1)
Tim gia tri lon nhat va gia tri nho nhat cua bieu thuc sau: A=\(\frac{x+1}{x^2+x+1}\)
GTLN :
\(A=\frac{x+1}{x^2+x+1}=\frac{\left(x^2+x+1\right)-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\)
Vì \(\frac{x^2}{x^2+x+1}=\frac{x^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\) nên \(A=1-\frac{x^2}{x^2+x+1}\le1\forall x\) có GTLN là 1
GTNN :
\(A=\frac{x+1}{x^2+x+1}=\frac{-\frac{1}{3}x^2-\frac{1}{3}x-\frac{1}{3}+\frac{1}{3}x^2+\frac{4}{3}x+\frac{4}{3}}{x^2+x+1}=\frac{-\frac{1}{3}\left(x^2+x+1\right)+\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}\)
\(=-\frac{1}{3}+\frac{\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}=-\frac{1}{3}+\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\ge-\frac{1}{3}\) có GTNN là \(-\frac{1}{3}\)
cho bieu thuc A = 2006 -x / 6-x tim gia tri nguyen cua x de A dat gia tri lon nhat. Tim gia tri lon nhat do
Tim gia tri cua x va y de bieu thuc C = -|x-2|-|y-3|-2009 co gia tri lon nhat ,tim gia tri lon nhat do
GTNN là -2009 <=> x = 2; y = 3
C không có GTLN vì x và y càng lớn hoặc càng nhỏ thì -|x - 2| và -|y - 3| càng nhỏ
Vì - / x-2/ </0
và - / y -3/ </ 0
=> C = -/ x-2/ - / y -3/ - 2009 </ 0+0-2009 = - 2009
Max C = -2009 khi x -2 =0 => x =2 và y -3 =0 => y =3
Ta có -|x - 2| < 0 ; -|y - 3| < 0
=> -|x - 2| - |y-3| < 0
=> C = -|x -2| - |y - 3| - 2009 < - 2009
GTLN của C là -2009 <=> |x - 2| = 0 ; |y - 3| = 0 <=> x = 2 và y = 3