Những câu hỏi liên quan
LU
Xem chi tiết
VM
5 tháng 2 2015 lúc 14:27

\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}=0 
+\frac{bz-cy}{a}=0bz=cy\frac{b}{y}= \frac{c}{z} 
+\frac{cx-az}{b}=0cx=az\frac{a}{x}= \frac{c}{z} 

Từ 
 và  ta có\frac{a}{x}= \frac{b}{y}= \frac{c}{z} (đpcm)

Bình luận (0)
CU
Xem chi tiết
H24
19 tháng 7 2015 lúc 15:04

Vì bz-cy/a=cx-az/b=ay-bx/c 
=> a(bz-cy)/a^2=b(cx-az)/b^2=c(ay-bx)/c^2 
=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2 
theo tính chất của dãy tỉ số bằng nhau : 
=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2=a^2+... 
= 0/a^2+b^2+c^2=0 
vì bz-cy/a=0=>bz=cy=>y/b=z/c (1) 
vì cx-az/b=0=>cx=az=>x/a=z/c (2) 
từ (1) và (2) => x/a=y/b=z/c

Bình luận (0)
NM
15 tháng 11 2016 lúc 21:56

trả lời sai đề

Bình luận (0)
Xem chi tiết
H24
Xem chi tiết
H24
9 tháng 12 2016 lúc 21:00

Ta có : bz-cy/a=cx-az/b=ay-bx/c

=a.(bz-cy)/a.a=b.(cx-az)/b.b=c.(ay-bx)/c.c

=abz-acy/a.a=bcx-baz/b.b=cay-cbx/c.c

=abz-acy+bcx-baz+cay-cbx/a.a+b.b+c.c(áp dụng tính chất dãy tỉ số bằng nhau)

=0    =)bz-cy=cx-az=ay-bx=0

   =)bz=cy,cx=az,ay=bx

=)b/y=c/z=a/x(áp dụng tính chất tỉ lệ thức)

=)a:b:c=x:y:z

Bình luận (0)
TT
7 tháng 2 2017 lúc 20:06

rõ hơn phần áp dụng được không

Bình luận (0)
H24
Xem chi tiết
NX
Xem chi tiết
DA
Xem chi tiết
MD
Xem chi tiết
TD
Xem chi tiết