CMR nếu 3 số a,b,c thỏa mãn a+b+c=2015 và 1/a+1/b+1/c=2015 thì 1 trong 3 số a,b,c bằng 2015
Chứng minh rằng nếu a, b, c là ba số thỏa mãn:
\(a+b+c=2015\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2015}\)
Thì trong 3 số a, b, c phải có một số bằng 2015
ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2015}\)
\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{2015}\)
\(\Rightarrow2015\left(ab+bc+ac\right)=abc\)
mà a+b+c=2015 \(\Rightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)
\(\Leftrightarrow\left(ab+bc\right)\left(a+b+c\right)+ac\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow b\left(a+c\right)\left(a+b+c\right)+ac\left(a+c\right)+abc-abc=0\)
\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ac\right)=0\)
\(\Leftrightarrow\left(a+c\right)\left(b+c\right)\left(a+b\right)=0\)
\(\Rightarrow a+c=0\Rightarrow b=2015;b+c=0\Rightarrow a=2015;a+c=0\Rightarrow b=2015\)
VẬy.......
Cho ba số a, b,c thỏa mãn: a+b+c = 1 và a^3+ b^3+c^3 =1. Tính A= a^2015+b^2015+c^2015
cho a,b,c là 2 số thực dương thỏa mãn 1/a +1/b +1/c = 1/ (a+b+c)
chứng minh 1/a^2015 +1/b^2015 + 1/c^2015 = 1/ (a^2015 + b^2015 + c^2015)
cho a,b,c là 2 số thực dương thỏa mãn 1/a +1/b +1/c = 1/ (a+b+c)
chứng minh 1/a^2015 +1/b^2015 + 1/c^2015 = 1/ (a^2015 + b^2015 + c^2015)
cho a;b;c là 3 số thoả mãn a+b+c=2015 và 1/a+1/b+1/c=1/2015
Theo cách làm của mình thì mình không biết có đúng hay không nhưng nhưng đây là cách làm của mình:
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{2\left(a+b+c\right)}{a.b.c}=\frac{2.2015}{a.b.c}\)
Mà \(\frac{2.2015}{a.b.c}=\frac{1}{2015}\Rightarrow2.2015=\frac{a.b.c}{2015}\)
Vậy có ít một số bằng 2015
Cho các số a,b,c thỏa mãn: a+b+c=1/a+1/b+1/c=1.Tính giá trị biểu thức sauM=a2015+b2015+c2015
Cho a,b,c khác 0 thỏa mãn (a+b+c)(1/a+1/b+1/c)=1.Tính giá trị của P=(a^11+b^11)(b^3+c^3)(a^2015+c^2015)
cho a,b,c là ba số thực khác 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)chung minh:
\(\frac{1}{a^{2015}}+\frac{1}{b^{2015}}+\frac{1}{c^{2015}}=\frac{1}{a^{2015}+b^{2015}+c^{2015}}\)
a,Cho ba số a, b, c thỏa mãn a+b+c =1 và a3+b3+c3=1. Tính giá trị của biểu thức : A= a2015 + b2015+c2015
b, Tìm GTNN của biểu thức B= x2-3x+2016
Giúp mình với ,please !!
MÀY vào câu hỏi tương tự .
Tao không rảnh
Ok?
a+b+c=1 <=> a+b=1-c
+) Nếu 1-c=0 => a+b=0 <=> a=-b
=> A = a2015+b2015+c2015
A = (-b)2015+b2015+c2015
A = c2015 => A = 1 (Vì 1-c=0) (1)
Ta có: a3+b3+c3=1
a3+b3=1-c3
(a+b)(a2-ab+b20=(1-c)(1+c+c2)
=> (1-c)(a2-ab+b2)=(1-c)(1+c+c2)
=> a2-ab+b2=1+c+c2
(a+b)2-3ab=(1-c)2+3c
=> -3ab=3c <=> -ab=c
Thay -ab = c vào a+b+c=1, ta có:
a+b+(-ab)=1 <=> a+b-ab-1=0 <=> a(1-b)-(1-b)=0 <=> (a-1)(1-b)=0
=> a-1=0 hoặc 1-b = 0 <=> a=1 hoặc b=1
+) Nếu a=1 => b+c=0 <=> b=-c
=> A=a2015+b2015+c2015
=> A=a2015+b2015-b2015
=> A=a2015 => A=1 (2)
+) Nếu b=1 => a+c=0 <=>a=-c
=> A=a2015+b2015+c2015
=> A=a2015+b2015+-a2015
=> A=b2015 => A=1 (3)
Từ (1)(2)(3) => A = 1
Vậy A = 1 với a+b+c=1 và a3+b3+c3=1
b) B = x2-3x+2016
B=x2-3x+2,25+2013,75
B=(x-1,5)2+2013,75
Vì (x-1,5)2 ≥ 0 => (x-1,5)2+2013,75 ≥ 2013,75
=> B ≥ 2013,75
=> GTNN của B bằng 2013,75
Dấu '=' xảy ra khi (x-1,5)2=0 <=> x-1,5=0 <=> x=1,5
Vậy GTNN của B bằng 2013,75 tại x = 1,5