Những câu hỏi liên quan
DS
Xem chi tiết
NH
23 tháng 5 2015 lúc 22:43

Ta có : Đặt biểu thức trên = S\(\left(\frac{1}{5}+\frac{1}{6}+....+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+....+\frac{1}{17}\right)

Bình luận (0)
TN
23 tháng 5 2015 lúc 22:44

Ta có :
1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10 < 1/5 + 1/5 + 1/5 + 1/5 + 1/5 + 1/5 = 6/5  (1)
1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 + 1/17 < 1/11 + 1/11 + 1/11 + 1/11 +1/11 + 1/11 + 1/11 = 7/11   (2)

Từ (1) và (2) => : A < 6/5 + 7/11 = 101/55 < 110/55 = 2 

Bình luận (0)
LM
Xem chi tiết
DK
Xem chi tiết
NT
Xem chi tiết
DK
Xem chi tiết
DL
Xem chi tiết
DL
19 tháng 3 2019 lúc 21:17

Là < 2 nha ko phải < 22

Bình luận (0)
VV
Xem chi tiết
GC
30 tháng 5 2015 lúc 15:48

1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10 < 1/5 + 1/5 + 1/5 + 1/5 + 1/5 + 1/5 = 6/5  (1)
1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 + 1/17 < 1/11 + 1/11 + 1/11 + 1/11 +1/11 + 1/11 + 1/11 = 7/11   (2)

Từ (1) và (2) => :

A < 6/5 + 7/11 = 101/55 < 110/55 = 2 

Bình luận (0)
DV
30 tháng 5 2015 lúc 15:49

giang ho dai ca copy bài ! Làm gì 50 giây đã gõ xong rồi !

Bình luận (0)
GC
30 tháng 5 2015 lúc 15:49

bài này mik từng làm rồi ; cop thôi

Bình luận (0)
H24
Xem chi tiết
NM
Xem chi tiết
PD
Xem chi tiết
PD
4 tháng 12 2019 lúc 15:41

Nhanh lên nhé

Bình luận (0)
 Khách vãng lai đã xóa
PD
4 tháng 12 2019 lúc 15:51

Giups mnihf đi

Bình luận (0)
 Khách vãng lai đã xóa
TC
4 tháng 12 2019 lúc 16:19

Mk làm câu a thôi nhé :)

Vì \(\frac{1}{5^2}< \frac{1}{4.5}\)

     \(\frac{1}{6^2}< \frac{1}{5.6}\)

       ...

       \(\frac{1}{100^2}< \frac{1}{99.100}\)

\(=>\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(< \)\(\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

                                                                          \(=\frac{1}{4}-\frac{1}{100}\)(1)

Vì \(\frac{1}{5^2}>\frac{1}{5.6}\)

     \(\frac{1}{6^2}>\frac{1}{6.7}\)

       ...

       \(\frac{1}{100^2}>\frac{1}{100.101}\)

\(=>\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-...+\frac{1}{100}-\frac{1}{101}\)

                                                                   \(=\frac{1}{5}-\frac{1}{101}\)(2)

Từ (1) và (2) => ĐPCM

Bình luận (0)
 Khách vãng lai đã xóa