cho (3^n) + 1 là B(10)(n thuộc N). Chứng minh rằng (3^n) + 4 +1 cũng là B(10)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho (3^n) + 1 là B(10)(n thuộc N). Chứng minh rằng (3^n) + 4 +1 cũng là B(10).(các bạn nhớ giải rõ ra nhé !!!)
nếu 3^n+1 chia hết cho 10 thì phải cộng thêm 1 số chia hết cho 10,mà 4 không chia hết cho 10.
Hay giả sử 3^n tận cùng là 5 thì mới +5 chia hết cho 10.
Mà 3^n tận cùng là 3;9;7;1. thôi.
Học tốt^^
cho (3^n)+1 là bội của 10 (n thuộc N*)Chứng minh rằng (3^n+4)+1 cũng là bội của 10
nếu 3n+1 chia hết cho 10 thì phải cộng thêm 1 số chia hết cho 10 mà 4 ko chia hết cho 10
hay giả sử 3^n tận cùng là 5 thì mới +5 chia hết cho 10
mà 3n tận cùng là 3,9,7,1
nên ko thể có 3^n+4+1 chia hết cho 10
Cho 3n+1 là bội của 10
Chứng minh 3n+4+1 cũng thuộc B(10)
Tick cho ai trả lời sớm nhất đó
3n+1 là bội của 10 suy ra 3n+1 tận cùng bằng 0
Suy ra 3n tận cùng băng 9
3n+4=3n.81=(.....9).81+1 tận cùng băng 0 nên chia hết cho 10
T..i..c..k mk nha
Phải là ...9+1 = ...0=10k chia hết cho 10 chứ
Nhưng thôi vẫn đó
3n+1 là B(10)
=>3n+1=10k
=>3n=10k-1
Ta có 3n+4+1=3n.34+1
=(10k-1).81+1=810k-81+1=810k-80=10.81.k-10.8=10.(81k-8) là B(10)
nhé
cho n là số nguyên dương, chứng minh rằng nếu 3n + 1 là bội của 10 thì 3n+4 +1 cũng là bội của 10
3n + 1 là bội của 10
=> 3n + 1 chia hết cho 10
mà 1 chia 10 dư 1
=> 3n chia 10 dư 9
- Xét 3n+4 + 1
= 3n.34 + 1
= 81.3n + 1
Có 81 chia 10 dư 1
3n chia 10 dư 9
=> 81.3n chia 10 dư 1.9
=> 81.3n chia 10 dư 9
mà 1 chia 10 dư 1
=> 81.3n + 1 chia hết cho 10
=> 3n+4 + 1 chia hết cho 10
=> 3n+4 + 1 là bội của 10
=> Đpcm
Nếu 3n +1 là bội của 10 thì 3n +1 có tận cùng là 0 => 3n có tận cùng là 9
Mà : 3n+4 +1 = 3n . 34 = .....9 . 81 + 1 = .....9 +1 = ......0
hay 3n+4 có tận cùng là 0 => 3n+4 là bội của 10
Vậy 3n+4 là bội của 10.
chứng minh rằng 3 mũ n + 1 là bội của 10 thì 3 mũ n+4 +1 cũng là bội của 10
viết rõ đầu bài bạn nhé 3n+1 không bao giờ bội của 10. vì nó chỉ có thể mang đuôi 1, 3, 9
Chứng minh rằng : 10n - 4 (n thuộc N*) là bội của 3 .
Chứng minh rằng : 92n+1 - 14 (n thuộc N*) là bội của 5 ,
10^n-4=10...0-4 (n số 0)
=999...96 (n-1 số 9)
Vì 999...96 có tổng các chữ số là 9n+6=3(3n+2) chia hết cho 3 nên 10^n-4 chia hết cho 3.
b/9^2n+1-14=9^2n.9-14=81^n.9-14=A1.9-14=A9-14=B5 chia hết cho 5. Vậy 9^2n+1 -14 chia hết cho 5
Chứng minh rằng : 10n - 4 ( n thuộc N*) là bội của 3.
Chứng minh rằng : 92n+1 - 14 ( n thuộc N*) là bội của 5.
câu 2 nè:
=92n*9-14
=...1*9-4-10
=...9 -4 -10
=...5-10
=...5 chia hết cho 5
10n- 4 = 99...6 (có n-1 chữ số 9)
theo dấu hiệu chia hết cho 3 thì 9(n-1) + 6 chia hết cho 3. Vì 9(n-1) chia hết cho 3, 6 chia hết cho 3
nên 10n- 4 chia hết cho 3 hay nó là bội của 3
câu 2
ta phân tích 9^2n+1 ra còn 9^2n*9 .Vì 2 nhân với bất cứ số tự nhiên nào cũng có chữ số tận cùng là 8 chữ số sau:0;2;4;6;8
Ta có bất cứ số tự nhiên có cơ số là 9 và số mũ chẵn thì có kết quả là.....1(có n chữ số). Mà 9^2n*9 sẽ có chữ số tận cùng 9 vì bất cứ số nào nhân với chữ số tận cũng bằng số cuối của số tự nhiên được nhân.
Ta có 9^2n+1-14=.....9-14.Ta phân tích 14=10+4 mà....9-4-10=(...9-4)-10 vì 9-4 =5 mà....5-10 cũng có chữ số cuối tận cùng là 5
Mà các số có chữ số tận củng cùng là 0 hoặc 5 luôn chia hết cho 5
suy ra 9^2n+1-14 là bội của 5
Vậy 9^2+1-14 là bội của 5
Cho 3^n +1 là bội của 10 ( với n là số nguyên dương ). Chứng tỏ rằng số : 3^n+4 +1 cũng là bội của 10
\(3^n+1⋮10\)
\(\Rightarrow3^n=\left(...9\right)\)
\(3^{n+4}=3^n.81=\left(..9\right).81=\left(...9\right)\Rightarrow3^{n+4}+1=\left(...0\right)⋮10\text{(đpcm)}\)
\(3^{n+1}\)là bội của 10
=>\(3^{n+1}⋮10\)10
mà 1 chia 10 dư 1
=>\(3^n\)chia 10 dư 9
- Xét \(3^{n+4}+1=3^n.3^4+1=81.3^n+1\)
Có 81 chia 10 dư 1
\(3^n\)chia 10 dư 9
\(\Rightarrow81.3^n\)chia 10 dư 1.9
mà 1 chia 10 dư 1
\(\Rightarrow81.3^n+1⋮10\) 1 chia hết cho 10
\(\Leftrightarrow3^{n+4}+1⋮10\)chia hết cho 10
\(\Rightarrow3^{n+4}+1\) là bội của 10
=> Đpcm
a, Chứng minh 6x+11y chia hết 31 khi và chỉ khi x+7y cũng chia hết cho 31 ( với x, y là các số nguyên )
b, Cho B = 1 / 31 + 1 / 32 + ... + 1 / 59 + 1 / 60. Hãy so sánh B với 2 / 3
c, Cho M = 108 + 2 / 108 - 1 và N = 108 / 108 - 3. Hãy so sánh M và N
d, Chứng minh rằng : A= n(n+1)(n+2)(n+3) không là số chính phương với mọi n thuộc N*
e, Tìm số tự nhiên có 3 chữ số, biết rằng nếu ta viết thêm một chữ số 3 vào bên phải số đó thì số đó tăng lên 2217 đơn vị
Mk cần gấp lắm!!! Các bạn giúp mk và có cả lời giải nha!!!!!! Ai đúng mk tick cho!!!