cho A = 4^1+4^2+4^3+4^4+.....+4^24
CM : a) A chia hết cho 20
b) A chia hết cho 420
Cho `A = 4 + 4^2 + 4^3 +...+ 4^23 + 4^24`
Chứng minh A chia hết 20; A chia hết 21; A chia hết 420
Lời giải:
$A=(4+4^2)+(4^3+4^4)+....+(4^{23}+4^{24})$
$=(4+4^2)+4^2(4+4^2)+....+4^{22}(4+4^2)$
$=(4+4^2)(1+4^2+...+4^{22})$
$=20(1+4^2+...+4^{22})\vdots 20$
----------------------------
$A=(4+4^2+4^3)+(4^4+4^5+4^6)+....+(4^{22}+4^{23}+4^{24})$
$=4(1+4+4^2)+4^4(1+4+4^2)+....+4^{22}(1+4+4^2)$
$=(1+4+4^2)(4+4^4+...+4^{22})$
$=21(4+4^4+....+4^{22})\vdots 21$
----------------------
Vậy $A\vdots 20; A\vdots 21$. Mà $(20,21)=1$ nên $A\vdots (20.21)$ hay $A\vdots 420$
cho A=4+4^2+4^3+4^4+......+4^24 .CMR:
A chia hết ; A chia hết 21 ; A chia hết cho 420
CMR: A=4+42+43+44+...+4120 thì A chia hết cho 20; A chia hết cho 21 và A chia hết cho 420
1) ta có A= 4+4^2 +4^3 +4^4 +...+4^120 =( 4+ 4^2 )+ (4^3+4^4) +...+ (4^119+4^120)
=4.(1+4) +4^3.(1+4) +...+4^119.(1+4) = (1+4).(4+4^3+...+4^119) =5 .(4+4^3+..+4^119)
mà 4+4^3+4^119 chia hết cho 4 , UCLN(4,5)=1 =>5.(4+4^3+...+4^119) chia het cho 20 => A chia het cho 20
2) ta coA= 4+4^2+4^3 +...+4^120 = (4+4^2+4^3) +...+ (4^118+4^119+4^120)
=4.(1+4+4^2)+...+4^118.(1+4+4^2) = 21.( 4+..+4^118) chia het cho 21 => A chia het cho 21
do A chia het cho 20, 21 mà UCLN(20,21) =1 nên A chia hết cho 20 .21 => A chia hết cho 420
1. .\(4+4^2+4^3+...+4^{23}+4^{24}\)
CMR : A chia hết cho 20 ; A chia hết cho 21 ; A chia hết 420
4 + 42 + 43 + 44 + ... + 423 + 424
= 4x(1+4) + 42x4x(1+4) + ... + 422x4x(1+4)
= 20 + 42x20 + ... + 422x20
= 20x(1+42+...+422)
Suy ra: A chia hết cho 20
4 + 42 + 43 + 44 + ... + 423 + 424
= (4 + 42 + 43) + ... + (422 + 423 + 424)
= 4x(1+4+42) + ... + 422x(1+4+42)
= 4x21 + ... + 422x21
= (4+...+422)x21
Suy ra: A chia hết cho 21
Vì A chia hết cho 21 , A chia hết cho 20
Suy ra: A chia hết cho 21x20=420
Cho A= 4+4^2+4^3+...+4^23+4^24
Chứng minh rằng A chia hết cho 20, chia hết cho 21, chia hết cho 420
giup mk nhé
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)
A = 5460.(1+4^6+4^12+4^18)
A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420
A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21
Cho A =4 + 42 + 43 +....+ 423 + 424
CMR: a chia hết cho 20: a chia hết cho 21: a chia hết cho 420.
Cho A = 4 + 42 + 43 +...+ 423 + 424. Chứng minh rằng :
A chia hết cho 20 ; A chia hết cho 21 ; A chia hết cho 420
\(A=\left(4+4^2\right)+.......+\left(4^{23}+4^{24}\right)\)
\(A=20.1+20.2^4+.......+20.2^{24}\)
\(A=20.\left(1+2^4+..........+2^{24}\right)\)
Vậy A chia hết cho 20
\(A=\left(4+4^2+4^3\right)+........+\left(4^{22}+4^{23}+4^{24}\right)\)
\(A=4.21+4^4.21+......+4^{20}.21\)
\(A=21.\left(1+4^4+......+4^{20}\right)\)
Vậy A chia hết cho 21
\(A=\left(4+4^2+......+4^6\right)+.........+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)\(A=13.420+4^6.13.420+........+4^{18}.13.420\)
\(A=420.13.\left(1+4^6+4^{12}+4^{18}\right)\)
Vậy A chia hết cho 420
Cho A= 4+42+43+....+423+424. Chứng Minh : A chia hết cho 20 ; A chia hết cho 21 ; A chia hết cho 420
ta có
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+..+\left(4^{23}+4^{24}\right)\)
\(=20+20\times4^2+..+20\times4^{22}\) thế nên A chia hết cho 20
\(A=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+..+\left(4^{22}+4^{23}+4^{24}\right)\)
\(=4\times21+4^4\times21+..+4^{22}\times21\) Thế nên A chia hết cho 21
thế nê A chia hết cho 20x21 =420
1.Cho A=4+42+43+....+423+424
a)Chứng tỏ A chia hết cho 20
b)Chứng tỏ A chia hết cho 21
c)Chứng tỏ A chia hết cho 420
a, 3S= 3+ 3^2 +3^3+....+3^2014+3^2015
3S-S=(3+3^2+......+3^2015)-(S=3^0 +3^1 +3^2 + . . . +3^2014)
2S=3^2015-3^0
b,Đề bị sai hay sao????.Thui để sau sẽ có người giúp cậu.Bye Bye!!!!!!!
Tui trả lời câu b nè:
S=(3+3^2+3^4)+...+(3^2012+3^2013+3^2014)
Vì máy tính ko viết được dấu nhân nên tui nói bằng lời còn bạn tự kiểm tra nha
Các tổng trên chia hết cho 7 nên S chia hết cho 7
Đảm bảo là đúng!!! :)
CLGT Minh!
2014 ko chia hết cho 3, ghép thế kiểu ****
theo mình thì đề sai rồi. Số mũ cuối chia hết cho 3 mới giải được
tống đến 2013 chia hết cho 7; 3^2014 ko chia hết được
còn câu a thì nhân tổng S với 3^2 để khử rồi chia cho 8