Những câu hỏi liên quan
H24
Xem chi tiết
H24
5 tháng 4 2020 lúc 16:23

Đặt A = \(\left(1+\frac{2}{4}\right).\left(1+\frac{2}{10}\right).\left(1+\frac{2}{18}\right).....\left(1+\frac{2}{n^2+3n}\right)\)

Ta có : A = \(\left(1+\frac{2}{4}\right).\left(1+\frac{2}{10}\right).\left(1+\frac{2}{18}\right).....\left(1+\frac{2}{n^2+3n}\right)\)

                 \(\frac{6}{4}.\frac{12}{10}.\frac{20}{18}.....\frac{\left(n+1\right).\left(n+2\right)}{n.\left(n+3\right)}\)

                = \(\frac{3.2}{4}.\frac{3.4}{2.5}.\frac{4.5}{3.6}.....\frac{\left(n+1\right).\left(n+2\right)}{n.\left(n+3\right)}\)

                = \(\frac{3.2.3.4.4.5....n}{2.3.4.5.6.....\left(n+2\right)}\)

                 = \(\frac{3.\left(n+1\right)}{n+2}\)

Vậy A = \(\frac{3.\left(n+1\right)}{n+2}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
DH
16 tháng 6 2021 lúc 8:48

\(A=\frac{n^2+4}{n+5}=\frac{n^2-25+29}{n+5}=n-5+\frac{29}{n+5}\) là phân số rút gọn được suy ra \(\frac{29}{n+5}\)là phân số rút gọn được. 

Khi đó \(\left(n+5,29\right)\ne1\)mà \(29\)là số nguyên tố nên ta có \(n+5=29k\Leftrightarrow n=29k-5\).

\(0\le29k-5< 2009\Rightarrow1\le k\le69\)

Vậy có \(69\)số tự nhiên \(n\)thỏa mãn. 

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
DN
Xem chi tiết
NL
Xem chi tiết
PQ
Xem chi tiết
H24
Xem chi tiết
H24
20 tháng 12 2023 lúc 20:54

ai trả lời đc t cho 200rb (robux) trog pls donet

 

Bình luận (0)
H24
18 tháng 12 2024 lúc 20:22

Chắc ko

Bình luận (0)
TA
Xem chi tiết
H24
Xem chi tiết
H24
5 tháng 12 2023 lúc 20:48

H-E-L-P-M-E

Bình luận (0)
LP
5 tháng 12 2023 lúc 20:51

 Trước tiên, ta thấy \(\left(n+1\right)\left(n+2\right)...\left(n+5\right)\) là tích của 5 số tự nhiên liên tiếp nên tích này chia hết cho 5. Do đó A chia 5 dư 2.

 Ta sẽ chứng minh một số chính phương (bình phương của một số tự nhiên \(k\)) không thể chia 5 dư 2. Thật vậy:

 Nếu \(k⋮5\Rightarrow k^2⋮5\)

 Nếu \(k\) chia 5 dư 1 hay -1 (tức là dư 4) thì đặt \(k=5l\pm1\left(l\inℕ\right)\) \(\Rightarrow k^2=\left(5l\pm1\right)^2=25l^2\pm10l+1\) chia 5 dư 1.

 Nếu \(k\) chia 5 dư 2 hay -2 (tức là dư 3) thì đặt \(k=5l\pm2\left(l\inℕ\right)\) thì \(k^2=\left(5l\pm2\right)^2=25l^2\pm20l+4\) chia 5 dư 4.

 Vậy một số chính phương không thể chia 5 dư 2. Thế nhưng theo cmt, A chia 5 dư 2. Điều này có nghĩa là A không phải bình phương của bất kì số nguyên nào. (đpcm)

Bình luận (0)
BA
5 tháng 12 2023 lúc 21:00

n-o

Bình luận (0)