cho biểu thức: A=1+2+22+23+24+.....+22009
Chứng tỏ:(A+1).52010 là một số chính phương
HELP ME !!!
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho A = 1 + 2 + 22 + 23 + ... + 22019
Chứng tỏ rằng A + 1 là một số chính phương
=> 2A =2 + 22 + 23 + ... + 22020
=> 2A-A =( 2 + 22 + 23 + ... + 22020)- (1 + 2 + 22 + 23 + ... + 22019)
=> A =22020-1
=> A+1 =22020
Vậy A + 1 là một số chính phương
Cho biểu thức : A=1/21+1/22+1/23+1/24+...+1/40. Chứng tỏ 1/2<A<1
ta có :
1/2=1/40+1/40+....+1/40 (20 số hạng)
1/21+1/22+1/23....+1/40(có 20 số hạng)
vì 1/21>1/40
1/22>1/40
..........
1/39>1/40
1/40=1/40
=>A<1/2
A<1 chịu
Ta có
\(\frac{1}{40}< \frac{1}{21}\\ \frac{1}{40}< \frac{1}{22}\\ ...\\ \frac{1}{40}< \frac{1}{39}\)
Mà số phần từ của A là 20
\(\Rightarrow\frac{1}{40}.20< A\Leftrightarrow\frac{1}{2}< A\)
Còn chứng minh bé hơn 1 thì tương tự bạn nhé!
Cho biểu thức A=1/21+1/22+1/23+1/24+.......+1/40
Chứng tỏ: 1/2 bé hơn A bé hơn 1
a)Tính nhanh: A= 1+5+9+13+...+101
b)Cho B = 1+2+22+24+25+26+27+28+29+210+211.
Chứng tỏ B chia hết cho 7
c)Rút gọn biểu thức C = 1+2+22+23+24+...+299.
1/
Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.
Số số hạng: $(101-1):4+1=26$
$A=(101+1)\times 26:2=1326$
2/
$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$
$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$
$=(1+2+2^2)(1+2^3+2^6+2^9)$
$=7(1+2^3+2^6+2^9)\vdots 7$
3/
$C=1+2+2^2+2^3+...+2^{99}$
$2C=2+2^2+2^3+2^4+...+2^{100}$
$\Rightarrow 2C-C=2^{100}-1$
$\Rightarrow C=2^{100}-1$
Cho A = 1 + 2 + 22 + 23 +....+ 211
Không tính tổng A, hãy chứng tỏ A chia hết cho 3.
Help me.
\(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)=3+2^2.3+...+2^{10}.3=3\left(1+2^2+...+2^{10}\right)⋮3\)
\(A=1+2+2^2+2^3+...+2^{10}+2^{11}\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)\)
\(=\left(1+2\right)\left(1+2^2+...+2^{10}\right)\)
\(=3\left(1+2^2+...+2^{10}\right)\) ⋮3
Cho biểu thức:
A=1+2+2^2+2^3+2^4+.........+2^2009
Chứng tỏ (A+1)×5^2010 là một số chính phương?
Cho biểu thức : A= 1+2+2^3 + 2^4 + ...+2^2009
Chứng tỏ (A+1) . 5^2010 là một số chính phương
A=11.....1(100 số 1) - 22......2(50 số 2) chứng tỏ A là một số chính phương
Cho biểu thức: A = 1/21 + 1/22 + 1/23 + 1/24 + ... + 1/40. Chứng tỏ 1/2 < A < 1
ai lm dc thì mk sẽ kb vs ngườ đó , và tặng thêm tick nữa nha !!!!!!
1/2=1/40+1/40+...+1/40 có 20 số hạng
1/21+1/22+...+1/40 có 20 số hạng
1/21>1/40
....
1/40=1/40=> 1/2<1/21+1/22+...+1/40
1=1/40+...+1/40 có 40 số hạng mà A chỉ có 20 số hạng
=>1/2<A<1
giúp mk dy , giúp mk dy mak huhu mk dag cần gấp !!!!!
\(A=\frac{1}{21}+\frac{1}{22}+.....+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+.....+\frac{1}{40}=\frac{20}{40}=\frac{1}{2}\)
\(A=\frac{1}{21}+\frac{1}{22}+......+\frac{1}{40}< \frac{1}{21}+\frac{1}{21}+......+\frac{1}{21}=\frac{20}{21}< 1\)
Vậy \(\frac{1}{2}< A< 1\)
Cho biểu thức
A=1+2+2^2+2^3+...+2^2009
Chứng tỏ (A+1)*5^2010 là một số chính phương
Giúp vs nha
A=1+2+........+22009
=> 2A=2+22+23+.................+22010
=> 2A-A=A=22010-1
=> (A+1).52010=22010.52010
=102010=(101005)2 là số chính phương ĐPCM