Những câu hỏi liên quan
H24
Xem chi tiết
BH
2 tháng 8 2017 lúc 17:12

n12-n8-n4+513 = (n12-n8)-(n4-1)+512 = n8(n4-1)-(n4-1)+512 = (n4-1)(n8-1)+512 = (n4-1)2(n4+1)+512 = (n4-1)2(n4+1)+512 =

= (n-1)2(n+1)2(n2+1)2(n4+1)+512

Ta có: 512=29

Nhận thấy 512 chia hết cho 512

Xét: n=1 => (n-1)2(n+1)2(n2+1)2(n4+1)=0 => n12-n8-n4+513=512 chia hết cho 512

n>1, n lẻ => (n-1)2; (n+1)2; (n2+1)2 và (n4+1) là các số chẵn và trong đó có ít nhất 2 số chia hết cho 4 

=> (n-1)2(n+1)2(n2+1)2(n4+1) là số có dạng: (2k)5(4n)2 = 25.24.k5.n5 = 512.a chia hết cho 512

=> (n-1)2(n+1)2(n2+1)2(n4+1)+512 chia hết cho 512 

=> n12-n8-n4+513 Chia hết cho 512 với mọi n lẻ

Bình luận (0)
TN
2 tháng 8 2017 lúc 17:02

í lộn 6, 7 và 8 nha bạn

Bình luận (0)
TN
2 tháng 8 2017 lúc 17:04

lộn -1 và 1 nha

Bình luận (0)
HT
Xem chi tiết

kham khảo ở đây nha

Câu hỏi của Trịnh Hoàng Đông Giang - Toán lớp 8 - Học toán với OnlineMath

vào thống kê hỏi đáp của mình có chữ màu xanh nhấn zô đó = sẽ ra 

hc tốt ~:B~

Bình luận (0)
H24
20 tháng 6 2019 lúc 14:45

Tham khảo câu hỏi tương tự:

https://olm.vn/hoi-dap/detail/85818524717.html

Bình luận (0)
DE
20 tháng 6 2019 lúc 14:47

bn có thể tham khảo tại đây:

câu hỏi của Trịnh Hoàng Đông Giang - toán lớp 8 - Học toán với OnlineMath

hk tốt

Bình luận (0)
LT
Xem chi tiết
DN
18 tháng 7 2017 lúc 19:22

Ta có: A =n^12-n^8-n^4+1 
=(n^8-1)(n^4-1)=(n^4+1)(n^4-1)^2 
=(n^4+1)[(n^2+1)(n^2-1)]^2 
=(n-1)^2*(n+1)^2*(n^2+1)^2*(n^4+1) 
Ta có n-1 và n+1 là 2 số chẵn liên tiếp nên có 1 số chỉ chia hết cho 2 ,1 số chia hết cho 4 nên (n-1)(n+1) chia hết cho 8 => (n-1)^2*(n+1)^2 chia hết cho 64 
Mặt khác n lẻ nên n^2+1,n^4+1 cũng là số chẵn nên (n^2+1)^2*(n^4+1) chia hết cho 2^3=8 
Do đó : A chia hết cho 64*8=512

Bình luận (0)
DN
18 tháng 7 2017 lúc 19:20

a, Ta có m là số nguyên chẵn

=> m có dạng 2k 

=> m3+20m=(2k)3+20.2k

=8k3+40k=8k(k2+5)

Cần chứng minh k(k2+5) chia hết cho 6

Nếu k chẵn => k(k2+5) chia hết cho 2

Nếu k lẻ =>k2 lẻ=> k2+5 chẵn=> k(k2+5) chia hết cho 2

Nếu k chia hết cho 3 thì k(k2+5) chia hết cho 3

Nếu k chia 3 dư 1 hoặc dư 2 thì 

k có dạng 3k+1 hoặc 3k+2

=> (3k+1)[(3k+1)2+5)]

=(3k+1)(9k2+6k+6) Vì 9k2+6k+6 chia hết cho 3 

=> k(k2+5) chia hết cho 3

Nếu  k chia 3 dư 2 

=> k có dạng 3k +2

=> k(k2+5)=(3k+2)[(3k+2)2+5]

=(3k+2)(9k2+12k+9)

Vì 9k2+12k +9 chia hết cho 3

=> k(k^2+5) chia hết cho 3

=> k(k2+5) chia hết cho 6

=> 8k(k2+5) chia hết cho 48

=> dpcm

Bình luận (0)
LT
18 tháng 7 2017 lúc 19:44

mơn bạn

Bình luận (0)
H24
Xem chi tiết
NH
Xem chi tiết
TH
14 tháng 2 2016 lúc 16:04

bai toan nay kho quá

Bình luận (0)
LH
Xem chi tiết
FZ
9 tháng 11 2015 lúc 19:44

a) Xét n2+4n+3= n2+n+3n+3= n(n+1) + 3(n+1)= (n+1)(n+3) 
Mà n là số nguyên lẻ nên n chia cho 2 dư 1 hay n= 2k+1( k thuộc Z) 
do đó n2+4n+3= (n+1)(n+3)= (2k+1+1)(2k+1+3)= (2k+2)(2k+4) 
= 2(k+1)2(k+2)= 4(k+1)(k+2) 
Mà (k+1)(k+2) là tích 2 số nguyên liên tiếp nên chia hết cho 2. 
Vậy n2+4n+3= (n+1)(n+3)= 4(k+1)(k+2) chia hết cho 4; chia hết cho 2

=>n2+4n+3 chia hết cho 4.2=8 ( đpcm)

Bình luận (0)
VL
6 tháng 8 2016 lúc 10:16

a) vì n lẻ nên n có dạng 2k+1 vậy n^2+4n+3=4k^2+1+8k+4+3

=4k^2+8+8k NX:8+8n chia hết cho 8 nên 4k^2 chia hết cho 8

vì 2k+1 lẻ nên k là số chẳn vậy k chia 8 dư 0;2;4;6 TH dư 0 dễ

nếu k chia 8 dư 2 thì 4k chia hết cho 8; nếu k chia 8 dư 4 thì k^2 chia hết cho 8

nếu k chia 8 dư 6 thì 4k^2 chia hết cho 8. bạn tự nhân lên sẽ rõ lí do 

Bình luận (0)
IV
24 tháng 7 2017 lúc 13:35

Ko có cau B ak hatsune muku

Bình luận (0)
LD
Xem chi tiết
H24
8 tháng 3 2016 lúc 20:45

-Bạn phân tích n^12-n^8-n^4+1. =(n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1).
-Do n lẻ nên trong n-1 và n+1 phải có một số chia hết cho 4, số còn lại chia hết cho 2; n^2+1 chia hết cho 2; n^4+1 chia hết cho 2.
=> (n-1)^2. (n+1)^2 chia hết cho 4^2.4; (n^2+1)^2 chia hết cho 4; n^4+1 chia hết cho 2.
=> (n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1) chia hết cho 4^2.4.4.2= 512.
Vậy đpcm. 

Bình luận (0)
H24
8 tháng 3 2016 lúc 20:47

-Bạn phân tích n^12-n^8-n^4+1. =(n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1).
-Do n lẻ nên trong n-1 và n+1 phải có một số chia hết cho 4, số còn lại chia hết cho 2; n^2+1 chia hết cho 2; n^4+1 chia hết cho 2.
=> (n-1)^2. (n+1)^2 chia hết cho 4^2.4; (n^2+1)^2 chia hết cho 4; n^4+1 chia hết cho 2.
=> (n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1) chia hết cho 4^2.4.4.2= 512.
Vậy đpcm. 

Bình luận (0)
H24
Xem chi tiết
HH
Xem chi tiết
TT
3 tháng 4 2017 lúc 0:13

Bạn xem lại đề. Nếu n chẵn thì

 \(n^{12}-n^8-n^4+1\)

là số lẻ. Do đó không thể chia hết cho 512 được.

Bình luận (0)
HH
3 tháng 4 2017 lúc 21:56

không cho n chẵn hay lẻ bạn ạ

Bình luận (0)
NT
12 tháng 9 2017 lúc 15:29

n=0 bạn ạ

Bình luận (0)