Xac dinh gia tri nho nhat cua bieu thuc: T=x^2+2xy+2y^2-2x-2y-2
Cho x+2y=1. Tim gia tri nho nhat cua bieu thuc A = x2+2y2.
Ta có: x+2y=1
=> x=1-2y
Thay x=1-2y vào biểu thức A
Ta có: A=(1-2y)2+2y2
A=(2x-1)2 >= 0, dấu = xảy ra <=> x=1/2
Vậy min A = 0 <=> x=1/2 và y=1/4
tính x theo y thế vào A tìm GTNN bằng HĐT
\(5A=\left(1^2+2^2\right)\left(x^2+2y^2\right)\ge\left(x+2y\right)^2=1\Rightarrow A\ge\frac{1}{5}\)
Tim gia tri nho nhat hoac gia tri lon nhat cua bieu thuc D = (x + 5)^2 + (2y - 6)^2 + 1
Nhỏ nhất:
D có giá trị nhỏ nhất khi: (x + 5)2 = 0 và (2y - 6)2 = 0
(x + 5)2 = 0
(x + 5)2 = 02
=> x + 5 = 0
x = 0 - 5
x = -5
(2y - 6)2 = 0
(2y - 6)2 = 02
=> 2y - 6 = 0
2y = 0 + 6
2y = 6
y = 6 : 2
y = 3
Ta có: D = 0 + 0 + 1 = 1
Lớn nhất:(không có giá trị lớn nhất)
Tim gia tri lon nhat hoac nho nhat cua cac bieu thuc sau
a, C=(x-1)2+\(|2y+2|\)-3
\(\left(x-1\right)^2\ge0;\left|2y+2\right|\ge0\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge-3\)
dấu = xảy ra khi \(\hept{\begin{cases}x-1=0\\2y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)
vậy GTNN của C là -3 khi x=1, y=-1
Cho hai so Thưc duong x, y thoa man x>=2y.Tim gia tri nho nhat cua bieu thuc P=(2x^2+y^2-2xy):xy
Cho bieu thuc A=\(\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\div\dfrac{1}{\sqrt{x}-1}\)
a/ Tim dieu kien cua x de bieu thuc A co gia tri xac dinh
b/ Rut gon A
c/ Tinh gia tri cua A khi x = \(4-2\sqrt{3}\)
d/ Tim gia tri nho nhat cua A
a. ĐKXĐ : x>1.
b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)
c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:
\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)
Vậy giá trị của A tại \(x=4-2\sqrt{3}\) là \(1+3\sqrt{3}\).
tim gia tri nho nhat cua bieu thuc tim gia tri nho nhat cua bieu thuc x^4-4x^3+12x^2-16x+16
Tim gia tri cua x de bieu thuc P=(x^2-2x+1989)/x^2 dat gia tri nho nhat.
\(P=\frac{x^2-2x+1989}{x^2}\)
\(\Leftrightarrow Px^2=x^2-2x+1989\)
\(\Leftrightarrow x^2\left(1-P\right)-2x+1989=0\)
\(\Delta=4-4\left(1-P\right)1989\ge0\)
\(\Leftrightarrow P\ge\frac{1988}{1989}\)có GTNN là \(\frac{1988}{1989}\)
Dấu "=" xảy ra \(\Leftrightarrow x=1989\)
Vậy \(P_{min}=\frac{1988}{1989}\) tại x = 1989
cho bieu thuc A=[x+2/x^2-x+x-2/x^2+x].x^2-1/x^2+2
a) tim dieu kien cua x de gia tri cua bieu thuc A duoc xac dinh
b) tinh gia tri cua bieu thuc A voi x = -200
a) \(A=\left[\dfrac{x+2}{x^2-x}+\dfrac{x-2}{x^2+x}\right].\dfrac{x^2-1}{x^2-x}\)
\(A=\left[\dfrac{x+2}{x\left(x-1\right)}+\dfrac{x-2}{x\left(x+1\right)}\right].\dfrac{x^2-1}{x^2+2}\)
\(A=\left[\dfrac{\left(x+2\right)\left(x+1\right)+\left(x-2\right)\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\right].\dfrac{x^2-1}{x^2+2}\)
\(A=\left[\dfrac{x^2+2x+x+2+x^2-2x-x+2}{x\left(x-1\right)\left(x+1\right)}\right].\dfrac{x^2-1}{x^2+2}\)
\(A=\dfrac{2x^2+4}{x\left(x^2-1\right)}.\dfrac{x^2-1}{x^2+2}\)
\(A=\dfrac{2\left(x^2+2\right)\left(x^2-1\right)}{x\left(x^2-1\right)\left(x^2+2\right)}=\dfrac{2}{x}\)
b) Thay \(x=-200\) vào biểu thức \(A=\dfrac{2}{x}\) ta được :
\(A=\dfrac{2}{x}=\dfrac{2}{-200}=\dfrac{-2}{200}=\dfrac{-1}{100}\)
cho\(x^2-2xy+2y^2-2x+6y+5=0\)tinh gia tri cua bieu thuc \(\frac{3x^2y-1}{4xy}\)