Những câu hỏi liên quan
HD
Xem chi tiết
HD
Xem chi tiết
DC
Xem chi tiết
YS
Xem chi tiết
H24
19 tháng 3 2016 lúc 19:18

=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+............+\frac{1}{18.19.20}\)

=\(\frac{2}{1.2.3.2}+\frac{2}{2.3.4.2}+............+\frac{2}{18.19.20.2}\)

=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}............+\frac{1}{18.19}-\frac{1}{19.20}\)

=\(\frac{1}{1.2}-\frac{1}{19.20}\)

=\(\frac{189}{380}\)

Bình luận (0)
NT
Xem chi tiết
DM
30 tháng 5 2017 lúc 21:47

qua de dang nhe

Bình luận (0)
DM
30 tháng 5 2017 lúc 21:54

S=1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+4+...+10)

S=1/(2*3/2)+1/(3*4/2)+1/(4*5/2)+...+1/(10*11/2)

S=2(1/(2*3)+1/(3*4)+1/(4*5)+1/(5*6)+...+1/(10*11)

S=2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/10-1/11)

S=2(1/2-1/11)

S=2*9/22

S=9/11

nho k cho minh voi nha

Bình luận (0)
BN
30 tháng 5 2017 lúc 22:33

\(S=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+10}\)

\(S=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{55}\)

\(S=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{110}\)

\(S=2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}\right)\)

\(S=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}\right)\)

\(S=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\right)\)

\(S=2\left(\frac{1}{2}-\frac{1}{11}\right)\)

\(S=2.\frac{9}{22}\)

\(S=\frac{9}{11}\)

Bình luận (0)
NH
Xem chi tiết
NK
22 tháng 5 2017 lúc 7:57

Câu 1 có sai đề bài không đấy?

Bình luận (0)
NK
22 tháng 5 2017 lúc 8:05

Câu 2: Ta có \(S=6^2+18^2+30^2+...+126^2\)

                   \(S=6^2\left(1^2+3^2+5^2+...+21^2\right)\)

                       \(=6^2.1771=36.1771=63756\)

Bình luận (0)
CT
Xem chi tiết
PH
26 tháng 1 2017 lúc 11:48

Bài 2:Ta có:\(a+7⋮a\)

\(\Rightarrow7⋮a\)

\(\Rightarrow a\inƯ\left(7\right)\)

\(Ư\left(7\right)=1;-1;7;-7\)

Suy ra \(a\in1;-1;7;-7\)

bà 3:\(a+1⋮a-2\)

\(a-2+3⋮a-2\)

\(3⋮a-2\)

\(\Rightarrow a-2\inƯ\left(3\right)\)

\(Ư\left(3\right)=1;3\);-1;-3

Suy ra:\(a\in3;5;1;-1.\)

Bình luận (0)
LB
Xem chi tiết
KN
1 tháng 5 2019 lúc 10:06

\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow M< 1-\frac{1}{99}< 1\)

Dễ thấy M > 0 nên 0 < M < 1

Vậy M không là số tự nhiên.

Bình luận (0)
KN
1 tháng 5 2019 lúc 10:08

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\left(đpcm\right)\)

Bình luận (0)
KN
1 tháng 5 2019 lúc 10:09

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow S< \frac{1}{50}+\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\)(50 số hạng \(\frac{1}{50}\))

\(\Rightarrow S< \frac{1}{50}.50=1\)

Vậy S < 1 (đpcm)

Bình luận (0)
HA
Xem chi tiết
LD
29 tháng 8 2017 lúc 13:44

Ta có : \(A=3+3^2+3^3+.....+3^{2016}\)

\(\Rightarrow3A=3^2+3^3+3^4+......+3^{2017}\)

\(\Rightarrow3A-A=3^{2017}-3\)

\(\Rightarrow2A=3^{2017}-3\)

\(\Rightarrow A=\frac{3^{2017}-3}{2}\)

\(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.....+\frac{1}{1024}\)

\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{512}\)

\(\Rightarrow2B-B=1-\frac{1}{1024}\)

\(\Rightarrow B=\frac{1023}{1024}\)

Bình luận (0)