giải phương trình 2x^2 - xy - y^2 + 3x + 3y -9 =0
GIÚP MÌNH NHA
Giải phương trình
a) x2 -2x +y2 -2y +4 -xy = 0
b) x2 -3x +y2 -3y +9 -xy =0
tìm giá trị nhỏ nhất của : P=(x-2015)^2 + (x+2016)^2
giải phương trình : \(2x^2-xy-y^2+3x+3y-9=0\)
Giải phương trình nghiệm nguyên:2x2-y2+xy-3x+3y-3=0
\(2x^2-y^2+xy-3x+3y-3=0\)
\(\Leftrightarrow2x^2-xy+x+2xy-y^2+y-4x+2y-2=1\)
\(\Leftrightarrow\left(2x-y+1\right)\left(x+y-2\right)=1\)
Từ đây bạn xét bảng giá trị và thu được kết quả cuối cùng là: \(\left(x,y\right)=\left(1,2\right)\).
Sao bạn suy ra hay vậy
Bài 1: Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+32y^2=9y^4+\frac{272}{9}\\x^2+y^2+xy+4=3x+4y\end{matrix}\right.\)
Bài 2: Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2-xy-3y^2+3x-y-1=0\\xy+y^2-x+3y=0\end{matrix}\right.\)
Bài 3: Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+3xy-9y^2+23y-17=0\\x^2-2xy+3y^2-6y-3=0\end{matrix}\right.\)
Ai nhanh và đúng mình sẽ cho đúng và thêm bạn bè nhé. Thanks! Làm ơn giúp mình !!! PLEASE !!!
Bài 1: Giải hệ phương trình:
\(\hept{\begin{cases}x^2+32y^2=9y^4=\frac{272}{9}\\x^2+y^2+xy+4=3x+4y\end{cases}}\)
Bài 2: Giải hệ phương trình:
\(\hept{\begin{cases}x^2-xy-3y^2+3x-y-1=0\\xy+y^2-x+3y=0\end{cases}}\)
Bài 3: Giải hệ phương trình:
\(\hept{\begin{cases}x^2+3xy-9y^2+23y-17=0\\x^2-2xy+3y^2-6y-3=0\end{cases}}\)
Ai nhanh và đúng mình sẽ cho đúng và thêm bạn bè nhé. Thanks! Làm ơn giúp mình !!! PLEASE !!!
GIẢI HỆ PHƯƠNG TRÌNH ( Mình không gõ được hệ phương trình nên trong một câu mình để hai phương trình, các bạn tự hiểu là hệ phương trình )
1,
( 1 / x + y ) + ( 1 / x - y ) = 5 / 8
( 1 / x + y ) - ( 1 / x - y ) = - 3 / 8
2,
( 4 / 2x - 3y ) + ( 5 / 3x + y ) = - 2
( 3 / 3x + y ) - ( 5 / 2x + 3y ) = 21
MÌNH ĐANG CẦN GẤP GIÚP MÌNH NHÉ MÌNH SẼ TICK NHANH CHO BẠN NÀO GIẢI ĐẦY ĐỦ VÀ NHANH 😭😭😭
Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)
a) giải hệ phương trình
\(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\\xy+\frac{1}{xy}=\frac{5}{2}\end{cases}}\)
b) giải pt \(\sqrt{2x+1}-\sqrt{3x}=x-1\)
c) tìm nghiệm nguyên dương của pt x3y+xy3-3x2-3y2=17
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
c) \(x^3y+xy^3-3x^2-3y^2=17\)
\(\Leftrightarrow xy\left(x^2+y^2\right)-3\left(x^2+y^2\right)=17\Leftrightarrow\left(x^2+y^2\right)\left(xy-3\right)=17\)
\(\Leftrightarrow\left(x^2+y^2\right),\left(xy-3\right)\inƯ\left(17\right)\)
Do \(x^2+y^2\ge0\Rightarrow x^2+y^2\in\left\{1;17\right\}\)
TH1: \(\hept{\begin{cases}x^2+y^2=1\\xy-3=17\end{cases}}\Rightarrow\hept{\begin{cases}\frac{400}{y^2}+y^2=1\\x=\frac{20}{y}\end{cases}}\) (vô nghiệm)
TH2: \(\hept{\begin{cases}x^2+y^2=17\\xy-3=1\end{cases}}\Rightarrow\hept{\begin{cases}\frac{16}{y^2}+y^2=17\\x=\frac{4}{y}\end{cases}}\)
Ta có bảng:
y2 | 16 | 16 | 1 | 1 |
y | 4 | -4 | 1 | -1 |
x | 1 | -1 | 4 | -4 |
Vậy các cặp số nguyên thỏa mãn là (x;y) = (1;4) ; (-1;-4) ; (4;1) ; (-4;-1).
giải hệ phương trình
a,\(\hept{\begin{cases}2x^2+xy=3x\\2y^2+xy=3y\end{cases}}\)b,\(\hept{\begin{cases}y^2=x^3-3x^2+2x\\x^2=y^3-3y^2+2y\end{cases}}\)
c,\(\hept{\begin{cases}3x+y=\frac{1}{x^2}\\3y+x=\frac{1}{y^2}\end{cases}}\)
d,\(\hept{\begin{cases}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{cases}}\)
Nói nghe có vẻ dễ ha Trần Hữu Ngọc Minh
Thật là trừ cho nhau không ạ bạn phải tìm x và y vì đây là một bài phương trình
Giải hệ phương trình:\(\hept{\begin{cases}3x^2+3y^2+\frac{1}{x^2-2xy+y^2}\\2x+\frac{1}{x-y}=5\end{cases}}=2\left(10-xy\right)\)