x | 1 | -8 | |||
y | 8 | -4 | \(2\frac{2}{3}\) | 1.6 |
cho x khác +_ ythoar mãn :\(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\).chứng minh 5y=4x
\(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}\)
\(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}\)
\(\frac{12x}{5y^3}.\frac{15y^4}{8x^3}\)
\(\frac{4y^2}{11x^4}.\frac{-3x^2}{8y}\)
\(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\frac{2\left(2-x\right)}{x+2}\)
\(=\frac{5}{4}.\frac{-2}{1}=\frac{-10}{4}\)
Giả sử x khác y; -y thoả mãn điều kiện:\(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
Chứng minh rằng: 5y=4x
cho x;y là các số thwucj dương phân biệt thỏa mãn ;
\(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
CMR : 5y=4x
Muốn làm rút gọn từ phải sang trái.
cho x,y là các số thực dương phân biệt thỏa mãn
\(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
CMR : 5y=4x
Giả sử : \(y=ax\)
Thay vào giả thiết : \(\frac{ax}{x+ax}+\frac{2\left(ax\right)^2}{x^2+\left(ax\right)^2}+\frac{4\left(ax\right)^4}{x^4+\left(ax\right)^4}+\frac{8\left(ax\right)^8}{x^8-\left(ax\right)^8}=4\)
\(\Leftrightarrow\frac{x.a}{x.\left(a+1\right)}+\frac{x^2.2a^2}{x^2\left(1+a^2\right)}+\frac{x^4.4a^4}{x^4\left(1+a^4\right)}+\frac{x^8.8a^8}{x^8\left(1-a^8\right)}=4\)
\(\Leftrightarrow\frac{a}{a+1}+\frac{2a^2}{a^2+1}+\frac{4a^4}{a^4+1}+\frac{8a^8}{1-a^8}=4\)
Tới đây bạn giải ra , tìm a rồi thay vào y = ax là ra :)
giả sử x,y là những số thực dương phân biệt thỏa mãn:
\(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
CMR: 5y=4x
giả sử x\(\ne\pm\)y thỏa mãn điều kiện \(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
Chứng minh 4x=5y
Em làm cách này được không ạ?!
Với \(x\ne\pm y\), ta có: \(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4\left(x^4-y^4\right)+8y^8}{\left(x^4-y^4\right)\left(x^4+y^4\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^2\left(x^4+y^4\right)}{\left(x^4-y^4\right)\left(x^4+y^4\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4-y^4}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2\left(x^2-y^2\right)+4y^4}{\left(x^2-y^2\right)\left(x^2+y^2\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2\left(x^2+y^2\right)}{\left(x^2-y^2\right)\left(x^2+y^2\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2-y^2}=4\)
\(\Leftrightarrow\frac{y\left(x-y\right)+2y^2}{\left(x-y\right)\left(x+y\right)}=4\)
\(\Leftrightarrow\frac{y\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}=4\)
\(\Leftrightarrow\frac{y}{x-y}=4\)
\(\Leftrightarrow y=4x-4y\Leftrightarrow5y=4x\left(đpcm\right)\)
\(\frac{x^3+8y^3}{8}:\frac{1}{2}x+y\)
Chứng minh:
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}< \frac{3}{4}\)
Cho x;y là hai số thực dương thỏa mãn:
\(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^2}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
Tính tỉ số : x/y
Đặt \(x=ty\), thay vào pt rút gọn ta được
\(\frac{1}{t+1}+\frac{2}{t^2+1}+\frac{4}{t^4+1}+\frac{8}{t^8-1}=4\)
Tính được một nghiệm là \(t=-1\) nhưng ko thoả :))