a)chứng minh rằng (5n+7).(4n+6) chia hết cho 2
b)(8n+1).(6m+5)
(xét n=2k , m=2k+1)
a) c/m: (5n+7)(4n+6) chia hết cho 2 (n thuộc N)
b) Chứng minh : (8n+1)(6n+5) ko chia hết cho 2 (n thuộc N)
a)(5n+7)(4n+6)
nếu n=2k =>(5.2k+7)(4.2k+6)=(10k+7)(8k+6)
Vì 8k+6 chia hết cho 2 nên (10k+7)(8k+6) chia hết cho 2 (1)
nếu n=2k+1 =>[5.(2k+1)+7].[4.(2k+1)+6]=(10k+5+7).(8k+4+6)=(10k+12).(8k+10) chia hết cho 2 (2)
Từ (1) (2) =>(5n+7).(4n+6) luôn chia hết cho 2
=>đpcm
chứng tỏ rằng:
a, (5n+7)*(4n+6) chia hết cho 2
b,(8n+1)*(6n+5) không chia hết cho 2
a, (5n+7)*(4n+6) = (5n+7).2.(2n+3) chia hết cho 2 b,(8n+1)*(6n+5)
8n là số chẵn nên 8n+1 là số lẻ nên không chia hết cho 2
6n là số chẵn nên 6n+5 là số lẻ nên không chia hết cho 2
vậy (8n+1).(6n+5) là số lẻ không chia hết cho 2
Chứng tỏ rằng
a, (5n+7)(4n+6) chia hết cho 2 với mọi số tự nhiên n
b,(8n+1)(6n+5) không chia hết cho 2 với mọi số tự nhiên n
a,cách 1: ta có: (5n+7)(4n+6)=(5n+7)(2n+3).2 chia hết cho 2
Vậy (5n+7)(4n+6) chia hết cho 2
Cách 2: Ta thấy:4n+6 có chữ số tận cùng là số chẵn=>(5n+7)(4n+6) có chữ số tận cùng là số chẵn.
mà các số có chữ số tận cùng là số chẵn thì số đó chia het cho
vậy (5n+7)(4n+6) chia het cho (đpcm)
b,Ta thấy :8n+1 co chu so tan cung la so le(vi 8n co chu so tan cung la so chan,ma chan+le=le)
6n+5 co chu so tan cung la so le(vi 6n co chu so tan cung la so chan,ma chan+le=le)
từ 2 dieu tren=>(8n+1)(6n+5) co chu so tan cung la so le
vậy (8n+1)(6n+5) khong chia het cho 2 voi moi stn n
câu a bạn nên làm theo cách 2
Chứng tỏ rằng :
a) (5n+7).(4n+6) chia hết cho 2 với n thuộc N
b)(8n+1).(6n+5) không chia hêt cho 2 với n thuộc N
a) (5n+7).(4n+6) = 2.(5n+7).(2n+3)
Vậy (5n+7).(4n+6) chia hết cho 2 với n thuộc N
b)(8n+1).(6n+5)
ta có
8n là số chẳn
=>8n+1 là số lẽ
hay 8n+1 không chia hết cho 2
lại có:
6n là số chẵn
=>6n+5 là số lẽ
hay 6n+5 không chia hết cho 2
suy ra (8n+1).(6n+5) không chia hêt cho 2 với n thuộc N
a)Ta có:(5n+7)(4n+6)=2.(5n+7)(2n+3) chia hết cho 2 với mọi n thuộc N(đpcm)
b)Do 8n là số chẵn với mọi n thuộc N=>8n+1 là số lẻ
Tương tự 6n+5 cũng là số lẻ
Mà tích 2 số lẻ là 1 số lẻ
Do tích 2 số lẻ không chia hết cho 2 nên
(8n+1)(6n+5) không chia hết cho 2 với mọi n thuộc N
Cho hỏi "tran vu lan phuong": Câu này bạn lấy ở đâu thế?
BT:chứng minh rằng :
a,(5n+7).(4n+6)chia hết cho 2 với mọi số tự nhiên n
b,(8n+1).(6n+5)ko chia hết cho 2 với mọi số tự nhiên n
Chứng tỏ rằng :
a) ( 5n + 7 ) x ( 4n + 6 ) chia hết cho 2 với mọi số tự nhiên n
b) ( 8n + 1 ) x ( 6n + 5 ) không chia hết cho 2 với mọi số tự nhiên n
Bài 1 :
Chứng minh rằng : a . ( 5n + 7 ) . ( 4n + 6 ) chia hết cho 2 , b . ( 8n + 1 ) . ( 4n + 5 ) không chia hết cho 2 , với n là số tự nhiên .
Bài 2 :
Chứng minh rằng : abab chia hết cho 101 .
Bài 3 :
Chứng minh rằng : ( n + 10 ) . ( n + 15 ) chia hết cho 2 với n là số tự nhiên .
Bài 4 :
Chứng minh rằng với mọi số tự nhiên n thì 30n + 12 chia hết cho 6 nhưng không chia hết cho 8 .
Chung minh rằng
(5n+7).(4n+6) chia hết cho 2 vơi mọi số tựn nhiên n
(8N+1).(6N+5) không chia hết cho 2 vơi moi số tự nhiên n
Bài 1 : Chứng tỏ rằng :
a : (5n+7) . (4n+6 ) chia hết cho 2 với mọi số tự nhiên
b : (8n+1 ) . 6n+5 ) không chia hết cho 2 với mọi số tự nhiên
a) (5n + 7).(4n + 6) = (5n + 7).2.(2n + 3) chia hết cho 2
b) Do 8n + 1 là số lẻ; 6n + 5 là số lẻ => (8n + 1).(6n + 5) là số lẻ, không chia hết cho 2