7(2x-3)-y(3-2x)
phân tích đa thức thành phân tử
Phân tích đa thức thành nhân tử 2x(y-1)-3(1-y)
3x⁶-6
Lời giải:
$2x(y-1)-3(1-y)=2x(y-1)+3(y-1)=(y-1)(2x+3)$
$3x^6-6=3(x^6-2)$
phân tích đa thức thành nhân tử (thêm bớt cùng một hạng tử):
x^3 - 2x - 4
phân tích đa thức thành nhân tử (đặt biến phụ):
x^4 + 2x^3 + 5x^2 + 4x - 12
#)Giải :
\(x^3-2x-4\)
\(=x^3+2x^2-2x^2+2x-4x-4\)
\(=x^3+2x^2+2x-2x^2-4x-4\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^4+2x^3+5x^2+4x-12\)
\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)
\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
Câu 1.
Đoán được nghiệm là 2.Ta giải như sau:
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
phân tích đa thức thành nhân tử: 8x3(y+z)-y3(z+2x)-z3(2x-y)
\(8x^3\left(y+z\right)-y^3\left(z+2x\right)-z^3\left(2x-y\right)\)
\(=8x^3\left(y+z\right)-y^3\left[\left(y+z\right)+\left(2x-y\right)\right]-z^3\left(2x-y\right)\)
\(=8x^3\left(y+z\right)-y^3\left(y+z\right)-y^3\left(2x-y\right)-z^3\left(2x-y\right)\)
\(=\left(y+z\right)\left(8x^3-y^3\right)-\left(2x-y\right)\left(y^3+z^3\right)\)
\(=\left(y+z\right)\left(2x-y\right)\left(4x^2+4xy+y^2\right)-\left(2x-y\right)\left(y+z\right)\left(y^2-xy+z^2\right)\)
\(=\left(y+z\right)\left(2x-y\right)\left(4x^2+4xy+y^2-y^2+xy-z^2\right)\)
\(=\left(y+z\right)\left(2x-y\right)\left(4x^2+5xy-z^2\right)\)
Phân tích đa thức thành nhân tử: 8x3(y+z)-y3(z+2x)-z3(2x-y)
Bây giờ mình đặt \(\left(2x;-y;z\right)=\left(a;b;c\right)\)với đa thức đã cho là S cho nó đẹp cái đã, cơ mà đề bài khúc cuối là cộng hay trừ thế
Nếu khúc cuối là trừ thì lúc này \(S=a^3\left(b+c\right)+b^3\left(c+a\right)-c^3\left(a+b\right)\)
Ta thấy biểu thức S gần đối xứng với các biến a,b,c
Với các biểu thức này thì thường dùng xét giá trị biến kiểu như thế này:
Nếu a=c thì thay vào S=b3(c+a)
Nếu b=c thì thay vào S=a3(b+c)
Do đó ta thấy S có dạng A.(b+c)(c+a), với a là một biểu thức bậc 2 với 3 biến a,b,c
Bây giờ mình đi tìm A như sau
Giả sử \(A=\alpha a^2+\beta b^2+\gamma c^2+uab+vbc+wca\)
Thử với các giá trị \(\cdot\left(a;b;c\right)=\left(1;2;3\right);\left(4;5;6\right);\left(7;8;9\right);...\)
Rồi tìm ra các hệ số của A rồi suy ra S bằng bao nhiêu đó
Các bạn ơi giải hộ mình vs mình cần gấp:
phân tích các đa thức sau thành nhân tử:
X^3-2x^2-x+2
X^2+6x-y^2+9
Phân tích đa thức 2x^3y-2xy^3-4xy^2-2xy thành nhân tử
a) x3-2x2-x+2
=x(x2-1)+2(-x2+1)
=x(x2-1)-2(x2-1)
=(x2-1)(x-2)
b)
x2+6x-y2+9
=x2+6x+9-y2
=(x+3)2-y2
=(x+3-y)(x+3+y)
3x(2x-3)+4(3-2x) phân tích đa thức thành nhân tử
\(=\left(3x-4\right)\left(2x-3\right)\)
Phân tích đa thức thành nhân tử:
(2x-3)2 - 5(2x-3)
Phân tích đa thức thành nhân tử:
x^3 - y^3+2x+1