Những câu hỏi liên quan
HM
Xem chi tiết
ND
Xem chi tiết
NN
5 tháng 6 2021 lúc 11:00

ho m,n là các số nguyên dương sao cho
5m+n chia hết cho 5n+m.
Chứng minh rằng m chia hết cho n

(5m+n)/(5n+m)=k (k€N
<=>[5m/n+5]/(m/n+5)=k
<=>5-20/(m/n+5)=k
<=>m/n+5€{±5,±4,±2,±1,±10,±20)€N
m/n=t-5(t€N)
m=p.n
p€N=>m chia het n

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
MV
Xem chi tiết
LC
Xem chi tiết
DT
Xem chi tiết
MH
8 tháng 4 2015 lúc 18:49

Giả sử m;n;p không có số nào chia hết cho 3

=> m ; n;p có dạng 3k +1 hoặ 3k + 2 (k thuộc N) 

=> m^2;n^2;p^2 có dạng 3x + 1(X thuộc N)

=> n^2 + p^2 cia 3 dư 2

Mà m^2 chia 3 dư 1 

=> m^2 khác n^2 + p^2 ( trái vói giả thiết )

Vậy m;n;p có ít nhất1 số chia hết cho 3

=>m*n*p chia hết cho 3                                (1)

Chứng minh tương tự :

m*n*p chia hếu cho 5                                    (2)

Từ (1) và (2) và  (3;5)=1

=>m*n*p chia heetscho 3*5 =15

Bình luận (0)
H24
Xem chi tiết
TQ
Xem chi tiết
TN
Xem chi tiết
HC
12 tháng 12 2016 lúc 10:37

Vì 3^m+5^n chia hết cho 8, 8^n+8^m chia hết cho 8

=>(8^m+8^n) - (3^m+5^n) chia hết cho 8

=>3^n+5^m chia hết cho 8

Bình luận (0)
CD
5 tháng 11 2021 lúc 20:48

Giả sử m,n đều là số chẵn .

Đặt n = 2a , m = 2b ( a,b thuộc Z+ ; a,b 》1 )

=> 3^m = 3^2b = 9^b đd 1 ( mod 8 ) ; 5^n = 5^2a = 25^a đd 1 ( mod 8 )

=> 3^m + 5^n đd 2 ( mod 8 ) ( trái với giả thiết )

=> Điều giả sử sai

=> m,n không cùng là số chẵn 

Tương tự : Nếu trong 2 số m,n có 1 số chẵn , 1 số lẻ không thỏa mãn giả thiết 

=> Cả m,n đều là số lẻ 

Xét tổng 3^m + 5^n + 3^n + 5^m = ( 3^m + 5^m ) + ( 3^n + 5^n )

= ( 3 + 5 ).( 3^m-1 - 3^m-2.5 + ... + 5^m-1 ) + ( 3 + 5 ).( 3^n-1 - ... + 5^n-1 ) ( Vì m,n đều là số lẻ )

= 8.M + 8.N chia hết cho 8

Mà 3^m + 5^n chia hết cho 8 ( giả thiết )

=> 3^n + 5^m chia hết cho 8 ( đpcm )

Vậy 3^n + 5^m chia hết cho 8 .

Bình luận (0)
 Khách vãng lai đã xóa