tìm ƯC của 2n+1 vả 3n +1 với n\(\in\)N
Tìm ƯC của 2n + 1 và 3n + 1 với n \(\in N\)
Gọi ƯCLN(2n+1,3n+1) là d (d thuộc N*)
Ta có: 2n+1 chia hết cho d => 6n+3 chia hết cho d
3n+1 chia hết cho d => 6n+2 chia hết cho d
=>6n+3-(6n+2) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(2n+1,3n+1)=1
=>ƯC(2n+1,3n+1)=1
tìm ƯC của 2n +1 va 3n+1 với n\(\in\) N
2n + 1 và 3n + 1 có ước chung đầu tiên là :
1 , để tìm các ước chung khác , ta tùy thuộc vào n
Có một số lúc 2n+ 1 và 3n + 1 sẽ có rất nhiều ƯC , nhưng đôi lúc lại chỉ có 1 ƯC duy nhất là 1
gói ỨC của 2n+1 và 3n+1 là x (x thuộc N)
nên 2n+1 chia hết cho x suy ra 3*(2n+1)chia hết cho x suy ra 6n+3 chia hết cho x
3n+1 chia hết cho x suy ra 2*(3n+1) chia hết cho x
do đó :(6n+3)-(6n+2) chia hết cho x
hay 1 chia hết cho x suy ra x thuộc Ư(1)
mà Ư(1) ={1}
vậy x=1
Tìm :
ƯC(2n+1,n+1)
ƯC(3n+2,N-1)
Gọi d là ƯCLN của 2n + 1 và n + 1
\(\Rightarrow\)2n + 1 \(⋮\)d và n + 1\(⋮\)d
\(\Rightarrow\)( 2n + 1 ) - ( n + 1 )\(⋮\)d
\(\Rightarrow\)( 2n + 1 ) -
Tiếp theo nhé
=> ( 2n + 1 ) - 2( n + 1 ) chia hết cho d
=> 2n + 1 - 2n - 2 chia hết cho d
=> - 1 chia hết cho d
Vậy : ƯCLN( 2n + 1, n + 1 ) = - 1
Tìm STN là ƯC của
a) n+2 và 3n-2
b) n-1 và 2n+3
c) 2n+1 và 3n-2
Tìm ƯC của :
a ) 5n +1 và n+3
b) 2n +4 và n+5
c) 3n +2 và 2n +3
d ) 3n -4 và n+1
1. a. Tìm UCLN của 2n - 1 và 9n + 4 ( n thuộc n sao)
b. ƯC ( 2n + 1, 3n+ 1)
c. ƯCLN ( 7n + 3, 8n- 1
Giải thế ai hiểu nổi hả trời???
Tìm ƯC ( 2n + 1 ; 3n + 1 ) n thuộc N
cảm ơn nhiu
ta gọi ƯC là k
3n+1 chia hêt cho k
2n +1 chia hết cho k
3n+1-2n-1 chia hết cho k
n chia hết cho k
nên ƯC là n
=> 2n+1 chia het cho d => 3.[2n+1] chia het cho d => 6n+3 chia het cho d
=> 3n+1 chia het cho d => 2.[3n+1] chia het cho d => 6n +2 chia het cho d
Khi do ta co: 6n+3-6n-2 chia het cho d
=> 1 chia het cho d
=> d thuoc U[1] ={ -1;1}
=> Do d thuoc N
=> d=1
Gọi d là ƯCLN ( 2n + 1 ; 3n + 1 )
2n + 1 chia hết cho d . Suy ra 6n + 3 chia hết cho d
3n + 1 chia hết cho d . Suy ra 6n + 2 chia hết cho d
(6n + 3) - ( 6n + 2 ) chia hết cho d
6n + 3 - 6n - 2 chia hết chó d
1 chia hết cho d suy ra d = 1
ƯC ( 2n + 1 ; 3n + 1 ) = 1
tìm ưc của hai số vơi n thuộc N
a) 2n+1 và 3n + 1
b) 2n+1 và 2n+3
c)2n+1 và 2n +3
a)ƯC(2n+1,3n+1)=1
b)ƯC(2n+1,2n+3)=1
c)ƯC(2n+1,2n+3)=1
1/ Tìm ƯC của 2 số 3n + 5 và n + 2 với n thuộc N.
2/ .Cứng minh rằng 2 số n+ 2 và 2n +3 là số nguyên tố.
a. Gọi ƯC(3n+5;n+2) là d
Ta có •3n+5 chia hết cho d
•n+2 chia hết cho d
=> 3(n+2) chia hết cho d
=> 3n+6chia hết cho d
=> (3n+6)-(3n+5) chia hết cho d
=>3n+6-3n-5 chia hết cho d
=> 1 chia hết cho d => d=1
Vậy ƯC(3n+5;n+2) =1
b. Gọi ƯC(n+2;2n+3) là d
Ta có • n+2 chia hết cho d
=> 2n+4 chia hết cho d
•2n+3 chia hết cho d
=> (2n+4)-(2n+3) chia hết cho d
=> 1 chia hết cho d=> d=1
=> ƯC(n+2;2n+3) =1
Vậy n+2 và 2n+3 là 2 số nguyên tố cùng nhau