Những câu hỏi liên quan
H24
Xem chi tiết
HB
Xem chi tiết
ZT
Xem chi tiết
ZT
Xem chi tiết
PL
Xem chi tiết
KB
5 tháng 1 2016 lúc 19:17

Đem B*3 dzô rùi rút gọn

Bình luận (0)
NT
Xem chi tiết
NL
8 tháng 8 2016 lúc 19:49

\(\left(1\frac{1}{4}-\frac{3}{5}\right):\frac{17}{20}< \frac{x}{17}< \left(5\frac{1}{3}-3\frac{1}{2}\right).\frac{12}{17}\)

\(\left(\frac{5-3}{4}\right):\frac{17}{20}< \frac{x}{17}< \left(\frac{16}{3}-\frac{7}{2}\right).\frac{12}{17}\)

\(\frac{1}{2}:\frac{17}{20}< \frac{x}{17}< \left(\frac{32-21}{6}\right).\frac{12}{17}\)

\(\frac{10}{17}< \frac{x}{17}< \frac{3}{2}.\frac{12}{17}\)

\(\frac{10}{17}< \frac{x}{17}< \frac{18}{17}\)

( Mik thấy mẫu giống nhau mik sẽ bỏ mẫu đi mik sẽ tìm tử )

=> 10 < 11 ; 12 ; 13 ; 14 ; 15 ; 16 ; 17 < 18

=> x = { 11 ; 12 ; 13 ; 14 ; 15 ; 16 ; 17 }

k mik nha làm ơn đó

Bình luận (0)
TK
Xem chi tiết
H24
Xem chi tiết
DT
24 tháng 3 2017 lúc 20:06

\(\left(\frac{5}{3}+\frac{3}{4}\right):\left(\frac{7}{2}-\frac{9}{4}\right)< A< 3\frac{1}{2}-\frac{1}{2}\)

\(3\frac{1}{2}-\frac{1}{2}=3\)

A=2

Bình luận (0)
TL
24 tháng 3 2017 lúc 20:05

2 nha

Ai chưa cóngwời yêu thì k cho mình nhé

Bình luận (0)
NK
Xem chi tiết
TD
1 tháng 6 2018 lúc 15:33

vì bài dài quá nên mình làm từng bài 1 nhé

1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Do đó : 

\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)

Bình luận (0)
TD
1 tháng 6 2018 lúc 15:36

2.

Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Do đó : 

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)

Bình luận (0)
TD
1 tháng 6 2018 lúc 15:38

3.

Nhận xét ; \(1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

Do đó : \(B=\frac{1.4}{2.3}.\frac{2.5}{3.4}...\frac{\left(n-1\right)n\left(n+2\right)}{n\left(n+1\right)}\)

Rút gọn được : B = \(\frac{1}{n}.\frac{n+2}{3}>\frac{1}{3}\)

Bình luận (0)