Tìm n thuộc N sao cho n^4+1 là số nguyên tố
Tìm n thuộc số tự nhiên
sao cho n4-1 là số nguyên tố
không có số nào hình như là z :)
1) tìm số nguyên tố p sao cho các số sau là số nguyên tố
a) p+2;p+6;p+8;p+10
b)p2+4;p2-4
2) tìm n thuộc N sao cho ; (n-2)(n^2+n-1)
ai nhanh mk tk !
Tìm n thuộc P sao cho
a, n+2,n+4 là số nguyên tố
b,n+2,n+6,n+8,n+12,n+14 đều là số nguyên tố
tìm n thuộc N sao cho n^2006+n^2005+1 là số nguyên tố.
A = n^2006 + n^2005 + 1
Với n = 1 thì A là số nguyên tố.
Xét n > 1
A = n^2006 + n^2005 + n^2004 - ( n^2004 - 1)
A = n^2004( n² + n + 1) - [ (n³)668 - 1] (1)
Ta có :
(n³)668 - 1 chia hết cho n³ - 1
n^2004 - 1 chia hết cho n² + n + 1 (2)
Từ (1) và (2) => nếu n> 1 thì A chia hết cho n² + n +1.
Vậy chỉ có n =1 thì A là số nguyên tố
đi tìm trên mạng đầy, lên đây hỏi làm??????
refer
A = n^2006 + n^2005 + 1
Với n = 1 thì A là số nguyên tố.
Xét n > 1
A = n^2006 + n^2005 + n^2004 - ( n^2004 - 1)
A = n^2004( n² + n + 1) - [ (n³)668 - 1] (1)
Ta có :
(n³)668 - 1 chia hết cho n³ - 1
n^2004 - 1 chia hết cho n² + n + 1 (2)
Từ (1) và (2) => nếu n> 1 thì A chia hết cho n² + n +1.
Vậy chỉ có n =1 thì A là số nguyên tố
1.Tìm số nguyên tố p sao cho p+3 cũng là số nguyên tố
2. Cho n thuộc N. Chứng minh rằng hai số n+1 và 2n+3 là hai số nguyên tố cùng nhau
1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2
2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên
=>n+1;2n+3 chia hết cho a
=>2.(n+1);2n+3 chia hết cho a
=>2n+2;2n+3 chia hết cho a
=>(2n+3)-(2n+2) chia hết cho a
=>1 chia hết cho a
=>a=1
=>n+1 và 2n+3 là hai số nguyên tố cùng nhau
1,Tìm n thuộc N để n+1 và 7n+4 là 2 số nguyên tố cùng nhau.
2,Tìm số tự nhiên n sao cho n2+3 là số chính phương.
Bài 1: Gọi ước chung lớn nhất của n + 1 và 7n + 4 là d
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}7n+7⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ 7n+ 7 - 7n - 4 ⋮ d
⇒ (7n - 7n) + (7 - 4) ⋮ d ⇒0 + 3 ⋮ d ⇒ 3 ⋮ d ⇒ d \(\in\) Ư(3) = {1; 3}
Nếu n = 3 thì n + 1 ⋮ 3 ⇒ n = 3k - 1 khi đó hai số sẽ không nguyên tố cùng nhau.
Vậy để hai số nguyên tố cùng nhau thì n \(\ne\) 3k - 1
Kết luận: n \(\ne\) 3k - 1
tìm số n thuộc N sao cho n^3 - n^2 + n-1 là số nguyên tố
1.tìm tất cả những giá trị n thuoocjN sao cho 3^n+4n+1 chia ết cho 8
2.cho p và 8p^2+1 là những số nguyên tố.CMR 8p^2+2p+1cungx là 1 số nguyên tố
3.tìm tất cả những số nguyên tố có dạng (2^(2^n)) +5 n thuộc N
4.hãy tìm số ngto p sao cho p^2 là uoc của (5^(p^2)) +1
tìm n thuộc z sao cho n^7+n^5+1 là số nguyên tố
Ta thấy \(n\ge1\)
với \(n=1\Rightarrow n^2+n^5+1=3\)là số nguyên tố
Với n > 1
Ta có \(n^7+n^5+1=\left(n^2+n+1\right)\left(n^5-n^4+n^3-n+1\right)>n^2+n+1>1\)
\(\Rightarrow n^2+n+1\)là ước của\(n^7+n^5+1\)( loại)
\(\Leftrightarrow n=1\)
Dễ thấy :
<br class="Apple-interchange-newline"><div id="inner-editor"></div>n≥1
Với n=1 => n7+n5+1=3 là số nguyên tố
Với n>1
Ta có n7+n5+1=(n2+n+1)(n5-n4+n3-n+1) > n2+n+1 > 1
=> n2+n+1 là ước của n7+n5+1(loại)
Vậy n=1