Những câu hỏi liên quan
HD
Xem chi tiết
NK
Xem chi tiết
DV
11 tháng 10 2015 lúc 22:27

Vì a,b \(\in\) N nên (a; b) \(\in\) {(1; 1); (1;2); (2;1); (2;3); (3;2)}

Bình luận (0)
PA
12 tháng 10 2015 lúc 5:48

Vì a , b thuộc N nên ( a ; b ) thuộc { ( 1 ; 1 ) ; ( 1 ; 2 ) ; ( 2 ; 1 ) ; ( 2 ; 3 ) ; ( 3 ; 2 ) }

Bình luận (0)
H24
12 tháng 10 2015 lúc 9:10

Ta tìm a\(\le\)b rồi hoán vị để tìm a,b

Ta có: a\(\ge b=>b+1\ge a+1=mb\)(m\(\in\)N)

=> m\(\in\){1;2}.

Với m=1 =>a+1=b=>a+2=b+1.Ta có b+1 chia hết cho a

=>a+2 chia hết cho a. Mà a chia hết cho a

=>2 chia hết cho a

=>a\(\in\)Ư(2)={1;2}  => b\(\in\){2;3}

Với m=2=> a+1=2b=>a=2b-1

Mà a chia hết cho a => 2(b+1)-3 chia hết cho a

Mà b+1 chia hết cho a =>  3 chia hết cho a

=>a\(\in\)Ư(3)={1;3} => b\(\in\){1;2}. Mà a\(\le\)b=> a=1;b=1

Vậy (a;b)\(\in\){(1;1);(1;2);(2;3);(2;1);(3;2)}                 (hoán vị a và b)

Bình luận (0)
NT
Xem chi tiết
QD
15 tháng 12 2016 lúc 13:23

Bài 1: a) => tập hợp a = { 108;117 }

b) => tập hợp b = { 90;100;110 }

Bình luận (0)
NN
Xem chi tiết
H24
Xem chi tiết
PP
Xem chi tiết
NN
Xem chi tiết
HA
Xem chi tiết
HN
12 tháng 10 2015 lúc 18:47

(a,b) là các cặp số: (1;1) (1;2); (2;1); (2;3) ; (3;2)

Bình luận (0)
ND
Xem chi tiết
QH
1 tháng 8 2015 lúc 10:58

1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6

Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60

n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)

n chia hết cho 7 => 60k + 1 chia hết cho 7

<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)

<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)

Vậy k nhỏ nhất là 5

Thế vào (*): n = 301 thỏa mãn

2. a) n = 25k - 1 chia hết cho 9

<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)

<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)

Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4

Thế vào trên được n = 99 thỏa mãn

b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21

Vậy không có n thỏa mãn

c) Đặt n = 9k

9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)

<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)

9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)

Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)

<=> a + 1 ≡ 0 (mod 4) (*)

Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn

Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D

Bình luận (0)
LD
13 tháng 10 2015 lúc 20:15

1. n = 301

2.a) n = 99

b) không có

c) n = 774

Bình luận (0)
DP
5 tháng 11 2015 lúc 17:55

qua de ma cung phai hoi

 

Bình luận (0)