Những câu hỏi liên quan
MH
Xem chi tiết
TP
2 tháng 8 2019 lúc 22:12

\(\left(-2\right).\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right).....\left(-1\frac{1}{2013}\right)\)

\(=\left(-2\right).\left(\frac{-3}{2}\right)\left(-\frac{4}{3}\right)......\left(\frac{-2014}{2013}\right)\)

\(=\frac{\left(-2\right).\left(-3\right).\left(-4\right)....\left(-2014\right)}{2.3.....2013}\)

\(=\frac{2.3.4....2014\left(\text{Vì có 2014 thừa số âm }\right)}{2.3....2013}\)

\(=\frac{\left(2.3.4....2013\right).2014}{2.3....2013}\)

\(=2014\)

Bình luận (0)
MT
Xem chi tiết
LN
Xem chi tiết
SM
Xem chi tiết
BB
Xem chi tiết
NH
Xem chi tiết
NT
3 tháng 3 2016 lúc 9:07

bn ơi cho mik hỏi cái này là vòng 15 của năm 2015-2016 hả

Bình luận (0)
NT
3 tháng 3 2016 lúc 9:10

2.    -1;0;1;2

4.     7cm

6.      9

Bình luận (0)
MD
Xem chi tiết
HN
16 tháng 7 2016 lúc 23:41

2) Ta có :  \(\left|x-1\right|+\left|1-x\right|=2\) (1)

Xét 3 trường hợp : 

1. Với \(x>1\) , phương trình (1) trở thành : \(x-1+x-1=2\Leftrightarrow2x=4\Leftrightarrow x=2\) (thoả mãn)

2. Với \(x< 1\), phương trình (1) trở thành : \(1-x+1-x=2\Leftrightarrow2x=0\Leftrightarrow x=0\)(thoả mãn)

3. Với x = 1 , phương trình vô nghiệm.

Vậy tập nghiệm của phương trình : \(S=\left\{0;2\right\}\)

Bình luận (0)
HN
16 tháng 7 2016 lúc 23:35

1) Cách 1:

Ta có ; \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)

Mặt khác theo bất đẳng thức Cauchy :\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\) ;\(\frac{b}{c}+\frac{c}{b}\ge2\) ; \(\frac{c}{a}+\frac{a}{c}\ge2\)

\(\Rightarrow A\ge1+2+2+2=9\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{a}\\\frac{b}{c}=\frac{c}{b}\\\frac{a}{c}=\frac{c}{a}\end{cases}}\)\(\Leftrightarrow a=b=c\)

Vậy Min A = 9 <=> a = b = c

Cách 2 : Sử dụng bđt Bunhiacopxki : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(1+1+1\right)^2=9\)

Bình luận (0)
HN
16 tháng 7 2016 lúc 23:43

3) Áp dụng câu 1) 

Bình luận (0)
NH
Xem chi tiết
CL
Xem chi tiết
CL
16 tháng 6 2019 lúc 22:20

Câu 8 :

\(N=\left(\frac{x-1}{\left(x-1\right)^2+x}-\frac{2}{x-2}\right):\left(\frac{\left(x-1\right)^4+2}{\left(x-1\right)^3-1}-x+1\right)\)

Đặt \(x-1=a\)

\(N=\left(\frac{a}{a^2+x}-\frac{2}{a-1}\right):\left(\frac{a^4+2}{a^3-1}-a\right)\)

\(N=\frac{a\left(a-1\right)-2\left(a^2+x\right)}{\left(a^2+x\right)\left(a-1\right)}:\frac{a^4+2-a\left(a^3-1\right)}{a^3-1}\)

\(N=\frac{a^2-a-2a^2-2x}{\left(a^2+x\right)\left(a-1\right)}:\frac{a^4+2-a^4+a}{a^3-1}\)

\(N=\frac{-a^2-a-2x}{\left(a^2+x\right)\left(a-1\right)}\cdot\frac{\left(a-1\right)\left(a^2+a+1\right)}{2+a}\)

\(N=\frac{-\left(a^2+a+2x\right)\left(a^2+a+1\right)}{\left(a^2+x\right)\left(2+a\right)}\)

\(N=\frac{-\left[\left(x-1\right)^2+x-1+2x\right]\left[\left(x-1\right)^2+x-1+1\right]}{\left[\left(x-1\right)^2+x\right]\left(2+x-1\right)}\)

\(N=\frac{-\left(x^2+x\right)\left(x^2-x+1\right)}{\left(x^2-x+1\right)\left(x+1\right)}\)

\(N=\frac{-x\left(x+1\right)}{x+1}\)

\(N=-x\)( đpcm )

Bình luận (0)
CL
16 tháng 6 2019 lúc 22:24

Câu 9 : Tìm giá trị nhỏ nhất của biểu thức :

\(P=\frac{x^2}{x+4}\cdot\left(\frac{x^2+16}{x}+8\right)+9\)

Bài làm :

\(P=\frac{x^2}{x+4}\cdot\frac{x^2+8x+16}{x}+9\)

\(P=\frac{x^2\left(x+4\right)^2}{x\left(x+4\right)}+9\)

\(P=x\left(x+4\right)+9\)

\(P=x^2+4x+9\)

\(P=\left(x+2\right)^2+5\ge5\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-2\)

Bình luận (0)
CL
16 tháng 6 2019 lúc 22:32

Bài 10 : Tìm GTLN

\(Q=\left(\frac{x^3+8}{x^3-8}\cdot\frac{4x^2+8x+16}{x^2-4}-\frac{4x}{x-2}\right):\frac{-16}{x^4-6x^3+12x^2-8x}\)

\(Q=\left[\frac{\left(x+2\right)\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\cdot\frac{4\left(x^2+2x+4\right)}{\left(x-2\right)\left(x+2\right)}-\frac{4x}{x-2}\right]:\frac{-16}{x\left(x^3-6x^2+12x-8\right)}\)

\(Q=\left(\frac{4\left(x^2-2x+4\right)}{\left(x-2\right)^2}-\frac{4x\left(x-2\right)}{\left(x-2\right)^2}\right):\frac{-16}{x\left[x^2\left(x-2\right)-4x\left(x-2\right)+4\left(x-2\right)\right]}\)

\(Q=\frac{4x^2-8x+16-4x^2+8x}{\left(x-2\right)^2}:\frac{-16}{x\left(x-2\right)\left(x^2-4x+4\right)}\)

\(Q=\frac{16}{\left(x-2\right)^2}\cdot\frac{-x\left(x-2\right)\left(x-2\right)^2}{16}\)

\(Q=-x\left(x-2\right)\)

\(Q=-x^2+2x\)

\(Q=-x^2+2x-1+1\)

\(Q=1-\left(x-1\right)^2\le1\forall x\)

Dấu "=" \(\Leftrightarrow x=1\)

Vậy....

Bình luận (0)