Những câu hỏi liên quan
AN
Xem chi tiết
PT
16 tháng 4 2017 lúc 6:21

Vì bạn bảo gợi ý nên gợi ý thui không giải:
1) Bạn thấy con A có tử 6- 840 là âm mà 520+1 là dương =>tử âm,mẫu dương=> p/s đó là âm
Còn phần B thì trên tử 3-540 và 2-720 là 2 số âm,mà tử âm,mẫu âm thì phân số đó dương
Số dương như thế nào với số âm thì tự làm...(gợi ý mà)
2) Phần b giống phần a nhé!
 

Bình luận (0)
AN
16 tháng 4 2017 lúc 11:33

Cảm ơn bạn Phùng Quang Thịnh :D
Còn bài 3 mình đã thử giải nhưng chưa ra , vì mẫu số là các số tự nhiên không liền kề nhau nên không rút gọn được .

Bình luận (0)
PT
16 tháng 4 2017 lúc 13:34

an nguyen cho tôi một chút thời gian để làm bài 3 nhé(chiều tối tôi sẽ có đáp án,vì giờ tôi bận nhé :) )

Bình luận (0)
H24
Xem chi tiết
KT
6 tháng 4 2018 lúc 19:29

id nhu 1 tro dua

Bình luận (0)
HH
Xem chi tiết
LD
Xem chi tiết
AT
29 tháng 10 2023 lúc 19:06

5và 3/8-1 và 5/6

 

Bình luận (0)
NT
Xem chi tiết
PD
20 tháng 5 2018 lúc 10:09

a) Đặt \(A=\frac{7^{15}}{1+7+7^2+...+7^{14}}\)

Đặt \(B=1+7+7^2+...+7^{14}\)

\(\Rightarrow7B=7+7^2+...+7^{15}\)

\(\Rightarrow7B-B=6B=7^{15}-1\)

\(\Rightarrow B=\frac{7^{15}-1}{6}\)

\(\Rightarrow A=\frac{7^{15}-1+1}{\frac{7^{15}-1}{6}}=\left(7^{15}-1\right).\frac{6}{7^{15}-1}+\frac{6}{7^{15}-1}=6+\frac{6}{7^{15}-1}\)

Tự làm tiếp nha

Bình luận (0)
NT
21 tháng 5 2018 lúc 8:25

bạn giải nốt đi

Bình luận (0)
NT
2 tháng 6 2018 lúc 9:51

ai giúp tôi với

Bình luận (0)
VL
Xem chi tiết
H24
2 tháng 5 2019 lúc 11:10

a) A=\(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)

ta có :

 \(A=\left(1-\frac{1}{179}\right)+\left(1-\frac{1}{180}\right)+\left(1+\frac{2}{181}\right)\)

 \(\Rightarrow A=\left(1+1+1\right)-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)\)

\(\Rightarrow A=3-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)< 3\)

Vậy \(A< 3\)

Bình luận (0)
KN
2 tháng 5 2019 lúc 11:16

a. Ta có :

\(\frac{178}{179}< 1\left(\frac{1}{179}\right)\)

\(\frac{179}{180}< 1\left(\frac{1}{180}\right)\)

\(\frac{183}{181}>1\left(\frac{3}{181}\right)\left(1\right)\)

Mà \(\frac{3}{181}>\frac{1}{179}+\frac{1}{180}\left(=\frac{359}{32220}< \frac{3}{181}\right)\left(2\right)\)

Từ \(\left(1\right)\&\left(2\right)\Rightarrow\frac{178}{179}+\frac{179}{180}+\frac{183}{181}< 1+1+1\)

Vậy \(A< 3\)

Bình luận (0)
H24
2 tháng 5 2019 lúc 11:16

b) \(A=\frac{1+5+5^2+5^3+...+5^{10}+5^{11}}{1+5+5^2+5^3+...+5^9+5^{10}}=5^{11}\)

bn rút gọn là dc  

\(B=\frac{1+7+7^2+7^3+...+7^{10}+7^{11}}{1+7+7^2+7^3+...+7^9+7^{10}}=7^{11}\)

\(A=5^{11},B=7^{11}\)

\(\Rightarrow7^{11}>5^{11}\Rightarrow B>A\)

hk tốt #

Bình luận (0)
Xem chi tiết
H24
Xem chi tiết
NQ
31 tháng 12 2017 lúc 20:44

A = 1 + 7^9/1+7+7^2+....+7^8

   = 1 + 7^9-1/1+7+....+7^8 + 1/1+7+....+1/7^8

   = 1 + 7-1 + 1/1+7+....+7^8

   = 7 + 1/1+7+....+7^8

Tương tự : B = 5 + 1/1+5+....+5^8

Vì 1/1+5+.....+5^8 < 1 => B < 5+1 = 6

Mà A > 6 => A > B

k mk nha

Bình luận (0)
H24
31 tháng 12 2017 lúc 20:46

Bạn viết phân số được ko bạn mình đọc ko hiểu

Bình luận (0)
NQ
31 tháng 12 2017 lúc 20:47

Bạn k cho mk đi !

Bình luận (0)
PT
Xem chi tiết
OO
25 tháng 3 2019 lúc 20:30

ta có : A = \(\frac{7^{10}}{1+7+7^2+7^3+...+7^9}=1:\frac{1+7+7^2+7^3+...+7^9}{7^{10}}\)

\(1:\left(\frac{1}{7^{10}}+\frac{7}{7^{10}}+\frac{7^2}{7^{10}}+...+\frac{7^8}{7^{10}}+\frac{7^9}{7^{10}}\right)\)=\(1:\left(\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7^2}+\frac{1}{7}\right)\)

tương tự ta được : B = \(1:\left(\frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5^2}+\frac{1}{5}\right)\)

Vì \(\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7^2}+\frac{1}{7}\)\(\frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5^2}+\frac{1}{5}\)

=> A > B 

Bình luận (0)