Tìm x biết rằng : x = \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
1,tìm các số x,y,z biết rằng
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x+3y-z=186
2,cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)chứng mih rằng \(\frac{a+b+c}{b+c+d}\)tất cả mủ 3 =\(\frac{a}{d}\)
3,cho\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)chứng minh rằng a=b=c
4,cho\(\frac{a}{2}=\frac{b}{5}\)và a.b=90.tìm a và b
5,tìm x,y,z biết \(\frac{y+z+1}{x}=\frac{y+z+2}{y}=\frac{x+y-3}{2}=\frac{1}{x+y+z}\)
1:cho \(\frac{a}{b}=\frac{c}{d}\)\(a,b,c,d\ne0,a\ne+_-b,a\ne+_-d\)
chứng minh rằng \(\frac{a+b}{b}=\frac{c+d}{d}\);\(\frac{a}{a-b}=\frac{c}{c-d}\)
2,biết rằng các cạnh tam giác tỉ lệ với các số 3,4,5 và chu vi tam giác là 36 cm.tính độ dài cac scanhj của tam giác đó
3,tìm a,b,c,d biết rằng a:b:c:d=3:4:5;6 và a+b+C+d=3,6
4,tìm x,y,z biết \(\frac{x}{3}=\frac{y}{2};\frac{x}{5}=\frac{z}{7}\)và x+y+z=184
1)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow ac-ad=ac-bc\Leftrightarrow a\left(c-d\right)=c\left(a-b\right)\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
2) Gọi độ dài các cạnh của tam giác đó là a,b,c thì a : b : c = 3 : 4 : 5 ; a + b + c = 36
\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\Rightarrow\hept{\begin{cases}a=3.3=9\\b=3.4=12\\c=3.5=15\end{cases}}\).Vậy tam giác đó có 3 cạnh là 9 cm ; 12 cm ; 15 cm
3)\(\hept{\begin{cases}a:b:c:d=3:4:5:6\\a+b+c+d=3,6\end{cases}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{d}{6}=\frac{a+b+c+d}{3+4+5+6}=\frac{3,6}{18}=0,2}\)
=> a = 0,2.3 = 0,6 ; b = 0,2.4 = 0,8 ; c = 0,2.5 = 1 ; d = 0,2.6 = 1,2
4)\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}:5=\frac{y}{2}:5\Leftrightarrow\frac{x}{15}=\frac{y}{10}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}:2=\frac{z}{7}:2\Leftrightarrow\frac{y}{10}=\frac{z}{14}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{14}=\frac{x+y+z}{15+10+14}=\frac{184}{39}=4\frac{28}{39}\Rightarrow\hept{\begin{cases}x=4\frac{28}{39}.15=70\frac{10}{13}\\y=4\frac{28}{39}.10=47\frac{7}{39}\\z=4\frac{28}{39}.14=66\frac{2}{39}\end{cases}}\)
câu 3,4 bạn làm tỉ lệ thức là xong
a) Tìm các số x và y biết rằng \(\left(x-\frac{1}{2}\right)^{2016}+\left|\frac{3}{4}-y\right|=0\)
b) Cho 3 số a,b,c khác nhau và khác 0. Biết \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Tính giá trị của biểu thức \(P=\frac{b+c}{a}-\frac{a+c}{b}-\frac{a+b}{c}\)
a)\(\left(x-\frac{1}{2}\right)^{2016},\left|\frac{3}{4}-y\right|\ge0\)
\(\left(x-\frac{1}{2}\right)^{2016}+\left|\frac{3}{4}-y\right|=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^{2016}=0\\\left|\frac{3}{4}-y\right|=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=0\\\frac{3}{4}-y=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}\end{cases}}\)
b)\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)
\(\Rightarrow\frac{b+c}{a}-\frac{a+c}{b}-\frac{a+b}{c}=0\)
a) Tìm 3 số x, y, z biết rằng 2x-y=20 và \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\).
b) Cho a,b,c là các số nguyên khác 0 và \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\). Chứng minh a=b=c.
a)Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}=\frac{2x-y}{6-4}=\frac{20}{2}=10\)
Từ \(\frac{x}{3}=10=>x=30\)
Từ \(\frac{y}{4}=10=>y=40\)
Từ \(\frac{z}{5}=10=>z=50\)
Vậy x=30,y=40,z=50
b)Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(=>\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}=>\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}=>a=b=c}}\)
Đpcm
a)Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}\)= \(\frac{y}{4}\)= \(\frac{z}{5}\)=\(\frac{2x-y}{\left(3\cdot2\right)-5}\)=\(\frac{20}{1}\)=20
-> \(\frac{x}{3}\)= 20 ->x=20*3=60
\(\frac{y}{4}\)=20->y=20*4=80
\(\frac{z}{5}\)=20->z=20*5=100
Vậy x=60, y=80, z=100.
a) Ta có : \(\frac{x}{3}=\frac{2x}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{2x-y}{6-4}=\frac{20}{2}=10\)
\(\Rightarrow\hept{\begin{cases}2x=10\cdot6=60\Rightarrow x=30\\y=10\cdot4=40\\z=10\cdot5=50\end{cases}}\)
Vậy....
=))
1, Chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
2, Tìm x và y biết \(\frac{x}{5}=\frac{y}{3}\)và x+y = 16
bạn Nguyễn Tuyết Mai có biết trả lời không vậy
a)Cho biểu thức: \(P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
Tìm giá trị biểu thức P biết rằng: \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
b)Cho dãy tỉ số bằng nhau: \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
Tìm giá trị biểu thức: \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
1, Tìm x,y,z biết:\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-7}\)và x-y-z=20
2 Cho a,b,c thỏa mãn:\(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}\).Chứng minh rằng: 4(a-b)(b-c)=(c-a)2
1) ADTCDTSBN
có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-7}=\frac{x-y-z}{3-5+7}=\frac{20}{5}=4.\)
=> ...
1.Cho a+b+c+d ≠0 và \(\frac{a}{b+c+d}\)=\(\frac{b}{a+c+d}\)=\(\frac{c}{a+b+d}\)=\(\frac{d}{a+b+c}\)
Tính giá trị của A=\(\frac{a+b}{c+d} \)+\(\frac{b+c}{a+d}\)+\(\frac{c+d}{a+b}\)+\(\frac{d+a}{b+c}\)
2.Tìm x,y,z biết :
a)\(\dfrac{x^3}{8}\)=\(\dfrac{y^3}{64}\)=\(\dfrac{z^3}{216}\)và \(x^2\)+\(y^2\)+\(z^2\)=14
b)\(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{6x}\)
1, \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)
Do đó \(\left\{{}\begin{matrix}3a=b+c+d\left(1\right)\\3b=a+c+d\left(2\right)\\3c=a+b+d\left(3\right)\\3d=a+b+c\left(4\right)\end{matrix}\right.\)
Từ (1) và (2) \(\Rightarrow3\left(a+b\right)=a+b+2c+2d\Leftrightarrow2\left(a+b\right)=2\left(c+d\right)\Leftrightarrow a+b=c+d\Leftrightarrow\dfrac{a+b}{c+d}=1\)
Tương tự cũng có: \(\dfrac{b+c}{a+d}=1;\dfrac{c+d}{a+b}=1;\dfrac{d+a}{b+c}=1\)
\(\Rightarrow A=4\)
2, Có \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)\(\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)
Do đó \(\dfrac{x^2}{4}=\dfrac{1}{4};\dfrac{y^2}{16}=\dfrac{1}{4};\dfrac{z^2}{36}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(1;2;3\right),\left(-1;-2;-3\right)\)
Bài 2 :
a, Ta có : \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)
\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)
Vậy ...
b, Ta có : \(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{5+7}=\dfrac{2x+3y-1}{6x}\)
\(\Rightarrow6x=12\)
\(\Rightarrow x=2\)
\(\Rightarrow y=3\)
Vậy ...