Những câu hỏi liên quan
PD
Xem chi tiết
NT
Xem chi tiết
MN
23 tháng 2 2017 lúc 20:54

trước tiên bạn phải tính:

2013/1+2012/2+2011/3+.....+2/2012+1/2013

=1+2012/2)+(1+2011/3)+.....+(1+2/2012)+(1+1/2013) +1 {BƯỚC NÀY TÁCH 2013 RA LÀM 2013SỐ1 ĐỂ CÔNG VS CÁC THỪA SỐ CÒN LẠI}

=2014/2+2014/3+...+2014/2012+2014/2013+2014/2014

=2014.(1/2+1/3+....+1/2012+1/20131/2014

suy ra x=2014

Bình luận (1)
H24
Xem chi tiết
H24
24 tháng 2 2018 lúc 16:09

mình đang cần gấp.Ngày 26 tháng 2 năm 2018 là mình phải nộp rồi

Bình luận (0)
PD
Xem chi tiết
CL
Xem chi tiết
HS
Xem chi tiết
TC
27 tháng 1 2016 lúc 11:20

Kho..................wa.....................troi.....................thi......................lanh.................ret.......................ai........................tich..........................ung.....................ho........................minh.....................cho....................do....................lanh

Bình luận (0)
NT
27 tháng 1 2016 lúc 11:21

\(7832\)

Bình luận (0)
TC
27 tháng 1 2016 lúc 11:21

Kho..................wa.....................troi.....................thi......................lanh.................ret.......................ai........................tich..........................ung.....................ho........................minh.....................cho....................do....................lanh

Bình luận (0)
AN
Xem chi tiết
HH
Xem chi tiết
NS
Xem chi tiết
TX
Xem chi tiết
BL
20 tháng 8 2017 lúc 12:53

x2+y2+z2= xy+yz+zx.

=> 2x2+2y2+2z2-2xy-2yz-2zx=0

=> ( x-y)2+(y-z.)2+(z-x)=0

=> x=y=z=0

Thay x=y=z vào x2011+y2011+z2011=32012 ta được:

3.x2011=3.32011

=> x2011=32011

=> x=3 hoặc x = -3

Hay x=y=z=3 hoặc x=y=z=-3

Bình luận (0)
DH
20 tháng 8 2017 lúc 13:11

1) có bn giải rồi ko giải nữa

2) \(A=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)....\left(2011^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)....\left(2012^4+\frac{1}{4}\right)}\)

Với mọi n thuộc N ta có :

\(n^4+\frac{1}{4}=\left(n^4+2.\frac{1}{2}.n^2+\frac{1}{4}\right)-n^2=\left(n^2+\frac{1}{2}\right)^2-n^2=\left(n^2-n+\frac{1}{2}\right)\left(n^2+n+\frac{1}{2}\right)\)

\(=\left[n\left(n-1\right)+\frac{1}{2}\right]\left[n\left(n+1\right)+\frac{1}{2}\right]\)

Áp dụng ta được :

\(A=\frac{\frac{1}{2}\left(1.2+\frac{1}{2}\right)\left(2.3+\frac{1}{2}\right)\left(3.4+\frac{1}{2}\right)....\left(2011.2012+\frac{1}{2}\right)}{\left(1.2+\frac{1}{2}\right)\left(2.3+\frac{1}{2}\right)\left(3.4+\frac{1}{2}\right).......\left(2012.2013+\frac{1}{2}\right)}\)

\(=\frac{\frac{1}{2}}{2012.2013+\frac{1}{2}}=\frac{1}{8100313}\)

Bình luận (0)