tính tổng
B=1+5+5^2+5^3 + ...5^50
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tính tổng
A=1+2+3+4+5+...+50
B=1+3+5+7+...+49
Số số hạng của tổng A là: 50
Tổng A có giá trị là: (1 + 50) x 50 : 2 = 1275
---------------------------------------------------------------------------------
Khoảng cách giữa 2 số hạng liên tiếp của tổng B là: 2 đơn vị
Số số hạng của tổng B là:
(49 - 1) : 2 + 1 = 25 (số hạng)
Tổng B mang giá trị là: (1 + 49) x 25 : 2 = 625
Đáp số: A = 1275
B = 625
\(A=1+2+3+...+50\)
Tổng của \(A\) là:
\(\left[\left(50-1\right):1+1\right].\left(50+1\right):2=1275\)
\(B=1+3+5+7+...+49\)
Tổng của \(B\) là:
\(\left[\left(49-1\right):2+1\right].\left(49+1\right):2=625.\)
cảm ơn các bạn. Mong các bạn sẽ giúp đỡ mình thêm
Tính tổng: a) A= 1 - 2 + 3 - 4 +5 - 6...+ 49 - 50; b) B = 1 + (-5) + 2 + (-6) +...+16 + (-20).
tính các tổng sau
A=1*2+2*3+3*4+4*5+5*6+6*7...+49*50
B=1*50+2*49+3*48+...+49*2+50*1
Tính tổng: a) A= 1 - 2 + 3 - 4 +5 - 6...+ 49 - 50; b) B = 1 + (-5) + 2 + (-6) +...+16 + (-20)
Làm chi tiết . Giúp với ạ
a, [1 - 2 ]+[ 3 - 4] +[5 - 6.]..+ [49 - 50] có 25 số hạng
=-1+[-1]+[-1]+...+[-1]
=-1.25
=-25
vậy b=-25
Bạn có thể làm nốt câu b ko ạ ?
a , so sánh lũy thừa 2^50 và 3^40 , 2^30 và 3^40 , 4^30 và 5^ 20 , 4^5 và 8^3
b tính tổng s = 1+3+5+...+51
s=2+4+6+..+50
So sánh:
a) 5^300 và 3^500
b) (-16)^11 và (-32)^9
c) (2^2)^3 và 2^2^3
d) 2^30 + 2^30 + 4^30 và 3^20 + 6^20 + 8^20
e) 4^30 và 3×24^10
g) 2^0 + 2^1 + 2^2 + 2^3 +...+ 2^50 và 2^51
Tính tổng A, biết: A = \(1+5^1+5^2+5^3+5^4+...+5^{49}+5^{50}\)
\(5A=5^1+5^2+5^3+...+5^{51}\)
\(4A=5A-A=5^{51}-1\)
\(\Rightarrow A=\frac{5^{51}-1}{4}\)
Bài 1: Tính tổng:
a, C = 4 + 42 + 43 +........+ 450
b, D = 2 + 5 + 52 +........+ 52000
mk chỉ lm đc câu b Thôi ,mà hình như câu b sai đề thì phải ,mk chữa lại đề nha ! :
D = 1+5+52+...+5200
bài lm :
ta có : D=1+5+52+...+52000
=> 5D=5+52+53+...+52001
5D-D=4D=(5+52+53+...+52001)-(1+5+52+...+52000)
=>4D=52001-1
=>D=52001-1 / 4
=>4D=
a, \(C=4+4^2+4^3+...+4^{50}\)
\(4C=4^2+4^3+4^4+...+4^{51}\)
\(4C-C=4^2+4^3+4^4+...+4^{51}-4-4^2-4^3-...-4^{50}\)
\(3C=4^{51}-4\)
\(C=\frac{4^{51}-4}{3}\)
Câu b tương tự
cho B={1+1/1*2*3+1+2*3*4+1/3*4*5+...+1/49*50*51}
tính tổng phần tử của B
Rút gọn tổng sau
A=1+2+2^2+2^3+...+2^50+2^51
Cho B=5+5^2+5^3+...+5^99+5^100
\(A=1+2+2^2+...+2^{51}\)
\(2A=2+2^2+2^3+...+2^{52}\)
\(2A-A=\left(2+2^2+2^3+...+2^{52}\right)-\left(1+2+2^2+...+2^{51}\right)\)
\(A=2^{52}-1\)
\(B=5+5^2+5^3+...+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{101}\)
\(5B-B=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+...+5^{100}\right)\)
\(4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)