a^2016+b^2016+c^2016=a^1008. b^1008+b^1008. c^1008+c^1008. a^1008.
Tính A=(a-b)^3+(b-c)^4+(c-a)^2015
Cho a,b,c thỏa mãn:
\(a^{2016}+b^{2016}+c^{2016}=a^{1008}b^{1008}+b^{1008}c^{1008}+c^{1008}a^{1008}\); a,b,c > 0
Tính biểu thức \(A=\left(a-b\right)^{15}+\left(b-c\right)^{2015}\left(a-c\right)^{2016}\)
\(a^{2016}+b^{2016}+c^{2016}=a^{1008}b^{1008}+b^{1008}c^{1008}+c^{1008}a^{1008}\)
\(\Rightarrow2a^{2016}+2b^{2016}+2c^{2016}=2a^{1008}b^{1008}+2b^{1008}c^{1008}+2c^{1008}a^{1008}\)
\(\Rightarrow\left(a^{2016}-2a^{1008}b^{1008}+b^{1008}\right)+\left(b^{2016}-2b^{1008}c^{1008}+c^{1008}\right)\)\(+\left(c^{2016}-2c^{1008}a^{1008}+a^{2016}\right)=0\)
\(\Rightarrow\left(a^{1008}-b^{1008}\right)^2+\left(b^{1008}-c^{1008}\right)^2+\left(c^{1008}-a^{1008}\right)=0\)
Vì \(\hept{\begin{cases}\left(a^{1008}-b^{1008}\right)^2\ge0\\\left(b^{1008}-c^{1008}\right)^2\ge0\\\left(c^{1008}-a^{1008}\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(a^{1008}-b^{1008}\right)^2+\left(b^{1008}-c^{1008}\right)^2+\left(c^{1008}-a^{1008}\right)^2\ge0\)
Dấu " = " xảy ra: \(\Leftrightarrow\hept{\begin{cases}a^{1008}-b^{1008}=0\\b^{1008}-c^{1008}=0\\c^{1008}-a^{1008}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a^{1008}=b^{1008}\\b^{1008}=c^{1008}\\c^{1008}=a^{1008}\end{cases}\Leftrightarrow}a=b=c\)
Thay a=b=c vào A ta có: \(A=\left(a-a\right)^{15}+\left(a-a\right)^{2015}+\left(a-a\right)^{2016}=0\)
Cho a,b,c thoả:
a2016+b2016+c2016=a1008.b1008+b1008.c1008+a1008.c1008
Tính (a-b)2013+(b-c)2014+(c-a)2015
Giải giúp tôi bài này với :
Cho a,b,c,d thỏa mãn : a2016 + b2016 + c2016 = a1008b1008 + b1008c1008 + c1008a1008
Tính A = ( a-b )30 + ( b - c ) 15 + ( c - a ) 2016
Đố bạn nào làm hết đc các câu này mik cho 5 tick hoặc 1 câu 1 tick cố lên nha :)) HELP ME
Câu 1: Cho \(x^2+xy+y^2=5\)
Tính giá trị biểu thức: A=\(x^4+y^4\left(x+y\right)^4\)
Câu 2: Cho a+b+c+d=0.CMR:
\(a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\)
Câu 3:Cho \(x+y=a;x^2+y^2=b;x^3+y^3=c\)
CM: \(a^3-3ab+2c=0\)
Câu 4: Cho a,b,c>0 thỏa mãn \(a^{2016}+b^{2016}+c^{2016}=a^{1008}b^{1008}+b^{1008}c^{1008}+c^{1008}a^{1008}\)
Tính giá trị biểu thức A=\(\left(a-b\right)^{15}+\left(b-c\right)^{2015}+\left(a-c\right)^{2016}\)
2. Đặt c + d = x
Ta có: \(a+b+c+d=0\Rightarrow a+b+x=0\Rightarrow a^3+b^3+c^3+d^3=3abx\)
\(\Rightarrow a^3+b^3+c^3+d^3+3cd\left(c+d\right)=3ab\left(c+d\right)\)
\(\Rightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)=3\left(ab-cd\right)\left(c+d\right)\)
Câu 4:
\(a^{2016}+b^{2016}+c^{2016}=a^{1008}b^{1008}+b^{1008}c^{1008}+c^{1008}+a^{1008}\)
\(\Rightarrow2a^{2016}+2b^{2016}+2c^{2016}-2a^{1008}b^{1008}-2b^{1008}c^{1008}-2c^{1008}a^{1008}=0\)
\(\Rightarrow\left(a^{1008}-b^{1008}\right)^2+\left(b^{1008}-c^{1008}\right)^2+\left(c^{1008}-a^{1008}\right)^2=0\)
\(\Rightarrow a^{1008}=b^{1008},b^{1008}=c^{1008},c^{1008}=a^{1008}\)
\(\Rightarrow a=b,b=c,c=a\) (vì a,b,c > 0 nên \(a\ne-b,b\ne-c,c\ne-a\) )
\(\Rightarrow a-b=0,b-c=0,a-c=0\)
Thay vào A ta tính được A = 0
cho 4 số a,b,c,d > o thỏa mãn a^4/b+c^4/d=1/b+d và a^2+c^2=1. chứng minh rằng a^2016/b^1006+c^2016/d^1008=2/(b+d)^1008
Cho a,b,c là các số thực thỏa:|a|<1;|a-c|<1008;|b-1|<1008.CMR: |ab-c|<2016
Ta có:
|a| < 1 và |b - 1| < 1008
=> |a|.|b - 1| < 1008
<=> |ab - a| < 1008
Ta lại có:
|ab - c| = |ab - a + a - c| \(\le\) |ab - a| + |a - c|
< 1008 + 1008 = 2016
cho bx^2=ay^2 va x^2+y^2=1 cm x^2016/a^1008+y^2016/b^1008=2/(a+b)^1008
Cho a,b,c,d\(\in\)N* ,a2+c2=1 và \(\frac{a^4}{b}+\frac{c^4}{d}=\frac{1}{b+d}\)CMR:
\(\frac{a^{2016}}{b^{1008}}+\frac{c^{2016}}{d^{1008}}=\frac{2}{\left(b+d\right)^{1008}}\)
Cho 3 số a,b,c biết ab/(a+b)=bc/(b+c)=ca/(c+a) tính P = (ab+bc+ca)^1008/(a^2016+b^2016+c^2016)