Những câu hỏi liên quan
PC
Xem chi tiết
NH
Xem chi tiết
HP
5 tháng 2 2016 lúc 13:25

Gọi 2 số cần tìm là x,y

Ta có xy=x+y

<=>xy-(x+y)=0

<=>xy-x-y=0

<=>x(y-1)-y+1=1

<=>x(y-1)-(y-1)=1

<=>(y-1)(x-1)=1

 TH1:y-1=x-1=1<=>x=y=2

TH2:y-1=x-1=-1<=>x=y=0

 Mà x,y E Z+ nên x=y=2

Bình luận (0)
H24
Xem chi tiết
HP
5 tháng 10 2021 lúc 19:50

12 số 0 nha bn

Bình luận (2)
HP
5 tháng 10 2021 lúc 20:06

Ta có: 12.0 = 0 + 0 + ..... + 0 (có 12 số 0) = 0

Ta lại có: 012 = 0 x 0 x 0 x .... x 0 (có 12 số 0) = 0

Ta thấy 2 đáp án đều bằng nhau, vậy số cần tìm là 0

Bình luận (1)
HP
5 tháng 10 2021 lúc 20:28

0 x 0 luôn luôn bằng 0 dù cộng bao nhiêu đi nữa

0 + 0 luôn luôn bằng 0 dù nhân bao nhiêu đi nữa

Bình luận (1)
NP
Xem chi tiết
NM
9 tháng 9 2018 lúc 21:03

1,

Gọi 3 số cần tìm là \(x,y,z\left(x,y,z\in Z;x,y,z>0\right)\)

Ta có : \(xyz=2\left(a+b+c\right)\)

Giả sử :\(x\ge y\ge z\Leftrightarrow xyz\le2.3x\)

\(xy\le6\) mà\(x,y\in Z\)

\(\Leftrightarrow xy\in\left\{1;2;3;4;5;6\right\}\)

Giải các trường hợp, ta được (x,y,z) là (1,3,8) ; (1,4,5) ; (2,2,4) và các hoán vị

Bình luận (0)
NL
22 tháng 12 2018 lúc 14:23

Mk đang cần

Có thể giải hết trường hợp đó ra ko

Bình luận (0)
H24
Xem chi tiết
NL
Xem chi tiết
TN
9 tháng 2 2016 lúc 21:26

dài lắm đợi tí

Bình luận (0)
TN
9 tháng 2 2016 lúc 21:33

Gọi 4 số tự nhiên là a, b, c, d (abcd∈N∗)

Không mất tính tổng quát, giả sử abcd≥1

Ta có: 

abcd=a+b+c+d                       (1)

abcd≤4a

bcd≤4 (a>0

d3≤4

d=1

 

Với d=1, ta có:

(1)⇔abc=a+b+c+1                 (2)              

abc≤3a+1

bc≤3+1a≤4

c2≤4

c=1∨c=2

 

TH1: c=1. Ta có:

(2)⇔ab=a+b+2

⇔(a−1)(b−1)=3

a≥1; b≥1⇒a−1≥0; b−1≥0a≥1; b≥1⇒a−1≥0; b−1≥0

aba−1≥b−1

Do đó a−1=3; b−1=1⇔a=4

 

TH2: c=2. Ta có:

(2)⇔ab=a+b+3(2)

⇔(a−1)(b−1)=4

a≥1; b≥1⇒a−1≥0; b−1≥0

aba−1≥b−1

Do đó: a−1=4; b−1=1a−1=4; b−1=1 hoặc a−1=2; b−1=2

a=5; b=2⇔a=5; b=2 hoặc a=3; b=3

Vậy 4 số tự nhiên cần tìm là (1; 1; 2; 4); (1; 2; 3; 3); (1; 2; 2; 5)(1; 1; 2; 4); (1; 2; 3; 3); (1; 2; 2; 5)

Bình luận (0)
NL
9 tháng 2 2016 lúc 21:41

dòng 12 viết sai ùi

Bình luận (0)
GC
Xem chi tiết
DM
21 tháng 7 2015 lúc 15:54

gọi ba số đó lần lượt là: x;y;z (x;y;z >0 )

theo đề ta có:

x+y+z=xyz

=>\(\frac{x+y+z}{xyz}=\frac{xyz}{xyz}\)

\(\Leftrightarrow\frac{x}{xyz}+\frac{y}{xyz}+\frac{z}{xyz}=1\)

\(\Leftrightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)

Nếu \(x\ge y\ge z\ge1\)thì 

\(1=\frac{1}{yz}=\frac{1}{xz}=\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)

=>\(1\le\frac{3}{z^2}\)

\(\Leftrightarrow z^2\le3\)

nên chỉ có z=1 mới thỏa mãn \(z^2\le3\text{ và }z>0\)

suy ra 3 số đó là 1;2;3

Bình luận (0)
H24
19 tháng 8 2017 lúc 21:07

gọi ba số đó lần lượt là: x;y;z (x;y;z >0 )

theo đề ta có:

x+y+z=xyz

=>x+y+zxyz =xyzxyz 

⇔xxyz +yxyz +zxyz =1

⇔1yz +1xz +1xy =1

Nếu x≥y≥z≥1thì 

1=1yz =1xz =1xy ≤1z2 +1z2 +1z2 =3z2 

=>1≤3z2 

⇔z2≤3

nên chỉ có z=1 mới thỏa mãn z2≤3 và z>0

suy ra 3 số đó là 1;2;3

Bình luận (0)
HL
Xem chi tiết
LV
10 tháng 8 2015 lúc 21:53

Ta có a.b.c = a+b+c 

Giả sử a = b = c ta có a^3 = 3a => a^2 = 3. Ptrình này không cho nghiệm nguyên dương, nên a; b; c là 3 số nguyên dương phân biệt. 

Tìm các số nguyên dương: 

Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c = a.b.c < 3a. Hay tích b.c <3. Vì a; b; c là các số nguyên dương; b.c <3. Do b;c nguyên dương nên tích b,c nguyên dương hay b.c = 1 hoặc b.c =2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý). 

Vậy ta có 1 + 2 + a = 1.2.a hay 3+a = 2a => a = 3. 
______________________________________________
li-kecho mk nhé bn Hoàng Khánh Linh

Bình luận (0)
H24
10 tháng 8 2015 lúc 21:55

LxP nGuyỄn hÒAnG vŨ làm bài nào cũng có dấu gạch dưới rồi đến câu **** cho mk nhé bn

Bình luận (0)
DC
22 tháng 12 2017 lúc 20:33

mình thấy bài giải của bạn LxP nGuyỄn hOÀnG vŨ giống copy quá!

Thấy giống câu trả lời của Phạm Văn Tuấn trả lời thevu ấy

Bình luận (0)
HP
Xem chi tiết
TM
2 tháng 6 2016 lúc 16:02

Giải lại nhá, hôm qua viết nhầm rồi

Gọi 3 số đó là x;y;z (x;y;z\(\ne\)0)

Theo đề bài ta có: x+y+z=xyz

\(\Rightarrow\frac{x+y+z}{xyz}=\frac{xyz}{xyz}\)

\(\Rightarrow\frac{x}{xyz}+\frac{y}{xyz}+\frac{z}{xyz}=1\)

\(\Rightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)

Nếu \(x\ge y\ge z\)thì \(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)

\(\Rightarrow1\le\frac{3}{z^2}\)

\(\Rightarrow z^2\le3\)nên chỉ có z=1 thỏa mãn \(z^2\le3\)và z>0

=>y=2 và x=3

Vậy z=1;y=2;x=3

Bình luận (0)
TE
1 tháng 6 2016 lúc 22:05

3 cái số đấy có khác nhau ko ?

Bình luận (0)
TM
1 tháng 6 2016 lúc 22:37

Gọi 3 số đó là: x;y;z(x;y;z\(\ne\)0)

Theo đề bài ta có: x+y+z=xyz

\(\Leftrightarrow\frac{x+y+z}{xyz}=\frac{xyz}{xyz}\)

\(\Leftrightarrow\frac{x}{xyz}+\frac{y}{xyz}+\frac{z}{xyz}=1\)

\(\Leftrightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)

Nếu \(x\ge y\ge z\) thì \(1=\frac{1}{yz}=\frac{1}{xz}=\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)

\(\Rightarrow1\le\frac{3}{z^2}\)

\(\Rightarrow z^2\le3\) nên chỉ có z=1 thỏa mãn \(z^2\le3\) và z>0

=>y=2 và x=3

Vậy z=1;y=2;x=3

Bình luận (0)