Những câu hỏi liên quan
NG
Xem chi tiết
CL
Xem chi tiết
TN
13 tháng 6 2016 lúc 20:00

(a+b+c)3=((a+b)+c)3=(a+b)3+c3+3(a+b)c(a+b+c)

=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)

=a3+b3+c3+3(a+b)(ab+c(a+b+c))

=a3+b3+c3+3(a+b)(ab+ac+bc+c2)

=a3+b3+c3+3(a+b)(a+c)(b+c)

Bình luận (0)
TT
14 tháng 6 2016 lúc 8:51

(a+b+c)3=((a+b)+c)3=(a+b)3+c3+3(a+b)c(a+b+c)

=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)

=a3+b3+c3+3(a+b)(ab+c(a+b+c))

=a3+b3+c3+3(a+b)(ab+ac+bc+c2)

=a3+b3+c3+3(a+b)(a+c)(b+c)

Bình luận (0)
TT
14 tháng 6 2016 lúc 8:51

(a+b+c)3=((a+b)+c)3=(a+b)3+c3+3(a+b)c(a+b+c)

=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)

=a3+b3+c3+3(a+b)(ab+c(a+b+c))

=a3+b3+c3+3(a+b)(ab+ac+bc+c2)

=a3+b3+c3+3(a+b)(a+c)(b+c)

Bình luận (0)
DL
Xem chi tiết
LF
8 tháng 12 2016 lúc 23:51

Từ \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc\)

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Rightarrow2ab+2ac+2bc=0\)

\(\Rightarrow2\left(ab+ac+bc\right)=0\)

\(\Rightarrow ab+ac+bc=0\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a}=-\left(\frac{1}{b}+\frac{1}{c}\right)\). Khi đó

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{b^3}+\frac{1}{c^3}-\left(\frac{1}{b}+\frac{1}{c}\right)^3=-\frac{3}{bc}\left(\frac{1}{b}+\frac{1}{c}\right)=-\frac{3}{bc}\cdot\frac{-1}{a}=\frac{3}{abc}\)

 

 

Bình luận (1)
H24
Xem chi tiết
DK
30 tháng 6 2016 lúc 8:05

Xét vế trái:

\(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+3a^2bc+3abc^2+c^3-a^3-b^3-c^3\)

\(=a^3+b^3+3ab\left(a+b\right)+3\left(a+b\right)^2c+3\left(a+b\right)c^2-a^3-b^3\)

\(=3ab\left(a+b\right)+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Vậy: \(\left(a+b+c\right)^3-a^3-b^3-c^3=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

(Nhớ k cho mình với nhá!)

Bình luận (0)
ND
Xem chi tiết
PN
Xem chi tiết
WN
15 tháng 4 2017 lúc 12:41

bài này mình chịu

mình mới lớp 5

Bình luận (0)
KS
15 tháng 4 2017 lúc 12:50

mình cũng thế 

tại sao bạn ko nghĩ

Bình luận (0)
PP
15 tháng 4 2017 lúc 12:52

e mứi có lp 7 ak

e k giúp đc rùi >.<

Bình luận (0)
H24
Xem chi tiết
NH
Xem chi tiết
LP
10 tháng 7 2023 lúc 21:44

 TH1: Nếu \(a\ge b\ge c\) thì đk đã cho tương đương với \(3\left(a-b\right)=5\left(b-c\right)=7\left(a-c\right)\) \(\Leftrightarrow\left\{{}\begin{matrix}3a-3b=5b-5c\\5b-5c=7a-7c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a+5c=8b\\7a-2c=5b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6a+10c=16b\\35a-10c=25b\end{matrix}\right.\) \(\Rightarrow41a=41b\Leftrightarrow a=b\). Điều này có nghĩa là \(a-b=0\), từ đó suy ra \(5\left(b-c\right)=0\Leftrightarrow b=c\). Vậy \(a=b=c\).

 TH2: Nếu \(b\ge c\ge a\) thì đk đã cho tương đương với \(3\left(b-a\right)=5\left(b-c\right)=7\left(c-a\right)\) \(\Leftrightarrow\left\{{}\begin{matrix}3b-3a=5b-5c\\5b-5c=7c-7a\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a+2b=5c\\7a+5b=12c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}15a+10b=25c\\-14a-10b=-24c\end{matrix}\right.\) \(\Rightarrow a=c\). Từ đó suy ra \(a-c=0\) hay \(3\left(b-a\right)=0\Leftrightarrow a=b\). Vậy \(a=b=c\).

 TH3: Nếu \(c\ge a\ge b\) thì đk đã cho tương đương với \(3\left(a-b\right)=5\left(c-b\right)=7\left(c-a\right)\) \(\Leftrightarrow\left\{{}\begin{matrix}3a-3b=5c-5b\\5c-5b=7c-7a\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a+2b=5c\\7a-5b=2c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}15a+10b=25c\\14a-10b=4c\end{matrix}\right.\) \(\Rightarrow29a=29c\Leftrightarrow a=c\). Từ đó suy ra \(a-c=0\) hay \(3\left(a-b\right)=0\Leftrightarrow a=b\). Vậy \(a=b=c\)

 Tất cả các trường hợp còn lại làm tương tự và đều suy ra được \(a=b=c\). Ta có đpcm.

Bình luận (0)
DN
10 tháng 7 2023 lúc 20:38

hi =D

Bình luận (0)
H24
Xem chi tiết