Những câu hỏi liên quan
NM
Xem chi tiết
LA
Xem chi tiết
VT
25 tháng 7 2016 lúc 21:53

Ta có : 

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

=> đpcm

Ủng hộ mk nha !!! ^_^

Bình luận (0)
H24
30 tháng 7 2016 lúc 17:24

\(\text{Ta có :}\)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

Bình luận (0)
EC
31 tháng 7 2016 lúc 12:35

 \(\text{Ta có :}\) \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

Bình luận (0)
VT
Xem chi tiết
NQ
2 tháng 6 2016 lúc 19:51

1:
- Ta có x^2+x+1=0
=> x^2+x=-1
=> x=x^2+1
mà x^2 x
=> x^2+1 x
=> Không tìm được giá trị của x
=> A không có giá trị

2.

Từ n2+n+1=0⇒n≠1⇒(n−1)(n2+a+1)=0⇒a3−1=0⇒a3=1n2+n+1=0⇒n≠1⇒(n−1)(n2+a+1)=0⇒a3−1=0⇒a3=1
Xét 3 trường hợp:
_ VỚi n = 3k thì A=(n3)k+1(n3)k=1+1=2(n3=1)A=(n3)k+1(n3)k=1+1=2(n3=1)
_ Với n = 3k + 1 thì A=(n3)k.n+1(n3)k.n=n+1n=n2+1n=−nn=−1A=(n3)k.n+1(n3)k.n=n+1n=n2+1n=−nn=−1
_Với n = 3k+2 thì A=(n3)k.n2+1(n3)k.n2=n2+1n2A=(n3)k.n2+1(n3)k.n2=n2+1n2
Ta có (n+1n)2=n2+1n2+2.n.1n=n2+1n2+2=1(n+1n)2=n2+1n2+2.n.1n=n2+1n2+2=1
 A = 1 -2 = -1
Mình không biết đúng không nha 

Bình luận (0)
TT
2 tháng 6 2016 lúc 20:04

ta có:

1/1.2+1/3.4+1/5.6+...+1/49.50

=>1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50

=>(1+1/3+1/5+1/7+...+1/49)-(1/2+1/4+1/6+...+1/50)

=>(1+1/2+1/3+...+1/49+1/50)-(1/2+1/4+1/6+...+1/50).2

=>(1+1/2+1/3+...+1/49+1/50) -( 1+1/2+1/3+...+1/25)

=>1/26+1/27+1/28+...+1/50=1/26+1/27+1/28+...+1/50

hay 1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50

Bình luận (0)
BT
9 tháng 10 2016 lúc 19:28

Ta biến đổi vế phải :

1-1/2+1/3-1/4+.....+1/49-1/50

=(1+1/3+1/5+....+1/49)-(1/2+1/4+1/6+.......+1/50)

=(1+1/2+1/3+.....+1/49+1/50)-2(1/2+1/4+1/6+......+1/50)

=(1+1/2+...+1/50)-(1+1/2+1/3+....+1/25)

=1/26+1/27+.......+1/50

Vậy 1/26+1/27+1/28+.....+1/50=1-1/2+1/3-1/4+......+1/49-1/50

Mình không bấm phân số được mong mấy bạn thông cảm

Bình luận (0)
H24
Xem chi tiết
TT
Xem chi tiết
NC
12 tháng 10 2018 lúc 20:57

Ta có :

    \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}-2.\frac{1}{2}-2.\frac{1}{4}-2.\frac{1}{6}-...-2.\frac{1}{50}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{25}\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

    Vậy ......

                         ~Hok tốt~

Bình luận (0)
PL
12 tháng 10 2018 lúc 20:58

CỨ TÍNH VẾ TRÁI R ĐC 

1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50

(1+1/3+1/5+...+1/49)+(1+1/2+1/4+...+1/50)-(1/2+1/4+1/6+...+1/50)-(1/2+1/4+1/6+...+1/50)

(1+1/2+1/3+1/4+...+1/50)-2(1/2+1/4+1/6+..+1/50)

(1+1/2+1/4+1/6+...+1/50)-(1+1/2+1/3+..+1/25)

1/26+1/27+...+1/50

Bình luận (0)
PL
12 tháng 10 2018 lúc 21:04

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

Ta có: Vế trái:\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+..+\frac{1}{48}+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{24}+\frac{1}{25}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{25}\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}=\)vế phải

Bình luận (0)
TA
Xem chi tiết
PT
15 tháng 1 2017 lúc 20:30

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+\frac{1}{29}+...+\frac{1}{50}\left(đpcm\right)\)

Bình luận (1)
PH
Xem chi tiết
H24
Xem chi tiết
ZZ
27 tháng 3 2019 lúc 21:56

\(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{49\cdot50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+.....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+.....+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+.....+\frac{1}{50}^{ĐPCM}\)

Bình luận (0)
NH
27 tháng 3 2019 lúc 21:56

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(A=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

Bình luận (0)
IL
Xem chi tiết
ND
25 tháng 11 2017 lúc 19:42

Ta có: \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)

\(-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

Bình luận (0)