Chứng Minh Rằng: 1/1.2+1/3.4/1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50
Chứng minh rằng:
1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50
GIÚP MÌNH VS <33333
Chứng minh rằng:\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
Ta có :
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
=> đpcm
Ủng hộ mk nha !!! ^_^
\(\text{Ta có :}\)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
\(\text{Ta có :}\) \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
Chứng minh rằng:
A=1\1.2 + 1\3.4 + 1\5.6 + ... + 1\49.50 = 1\26 + 1\27 + 1\28 + ... + 1\50
Có lời giải hay nhất 3 li ke
1:
- Ta có x^2+x+1=0
=> x^2+x=-1
=> x=x^2+1
mà x^2 x
=> x^2+1 x
=> Không tìm được giá trị của x
=> A không có giá trị
2.
Từ n2+n+1=0⇒n≠1⇒(n−1)(n2+a+1)=0⇒a3−1=0⇒a3=1n2+n+1=0⇒n≠1⇒(n−1)(n2+a+1)=0⇒a3−1=0⇒a3=1
Xét 3 trường hợp:
_ VỚi n = 3k thì A=(n3)k+1(n3)k=1+1=2(n3=1)A=(n3)k+1(n3)k=1+1=2(n3=1)
_ Với n = 3k + 1 thì A=(n3)k.n+1(n3)k.n=n+1n=n2+1n=−nn=−1A=(n3)k.n+1(n3)k.n=n+1n=n2+1n=−nn=−1
_Với n = 3k+2 thì A=(n3)k.n2+1(n3)k.n2=n2+1n2A=(n3)k.n2+1(n3)k.n2=n2+1n2
Ta có (n+1n)2=n2+1n2+2.n.1n=n2+1n2+2=1(n+1n)2=n2+1n2+2.n.1n=n2+1n2+2=1
A = 1 -2 = -1
Mình không biết đúng không nha
ta có:
1/1.2+1/3.4+1/5.6+...+1/49.50
=>1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50
=>(1+1/3+1/5+1/7+...+1/49)-(1/2+1/4+1/6+...+1/50)
=>(1+1/2+1/3+...+1/49+1/50)-(1/2+1/4+1/6+...+1/50).2
=>(1+1/2+1/3+...+1/49+1/50) -( 1+1/2+1/3+...+1/25)
=>1/26+1/27+1/28+...+1/50=1/26+1/27+1/28+...+1/50
hay 1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50
Ta biến đổi vế phải :
1-1/2+1/3-1/4+.....+1/49-1/50
=(1+1/3+1/5+....+1/49)-(1/2+1/4+1/6+.......+1/50)
=(1+1/2+1/3+.....+1/49+1/50)-2(1/2+1/4+1/6+......+1/50)
=(1+1/2+...+1/50)-(1+1/2+1/3+....+1/25)
=1/26+1/27+.......+1/50
Vậy 1/26+1/27+1/28+.....+1/50=1-1/2+1/3-1/4+......+1/49-1/50
Mình không bấm phân số được mong mấy bạn thông cảm
Chứng minh rằng:
a) 1.2 - 1 phần 2! + 2.3 -1 phần 3! + 3.4 -1/4! + ... + 99.100 -1 /100! < 2
b) 1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50 = 1/26 + 1/27 + 1/28 + ... + 1/50
Chứng minh rằng:
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
Ta có :
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}-2.\frac{1}{2}-2.\frac{1}{4}-2.\frac{1}{6}-...-2.\frac{1}{50}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{25}\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
Vậy ......
~Hok tốt~
CỨ TÍNH VẾ TRÁI R ĐC
1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50
(1+1/3+1/5+...+1/49)+(1+1/2+1/4+...+1/50)-(1/2+1/4+1/6+...+1/50)-(1/2+1/4+1/6+...+1/50)
(1+1/2+1/3+1/4+...+1/50)-2(1/2+1/4+1/6+..+1/50)
(1+1/2+1/4+1/6+...+1/50)-(1+1/2+1/3+..+1/25)
1/26+1/27+...+1/50
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
Ta có: Vế trái:\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+..+\frac{1}{48}+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{24}+\frac{1}{25}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{25}\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}=\)vế phải
Chứng minh rằng:
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+\frac{1}{29}+...+\frac{1}{50}\left(đpcm\right)\)
chung minh rang 1/1.2+1/3.4+1/5.6+....+1/49.50=1/26+1/27+1/28+....1/50
Chứng minh rằng l
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{49\cdot50}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+.....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+.....+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+.....+\frac{1}{50}^{ĐPCM}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(A=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
chứng minh rằng \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)\(\frac{1}{50}\)
Ta có: \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)
\(-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)