Những câu hỏi liên quan
TN
Xem chi tiết
VT
6 tháng 11 2016 lúc 10:28

Viết B dưới dạng \(8x+2+\frac{1}{2x}\). Hai số \(8x\)\(\frac{1}{2x}\) là hai số dương , có tích không đổi ( bằng 4 ) nên tổng của chúng nhỏ nhất khi và chỉ khi :

\(8x=\frac{1}{2x}\Leftrightarrow16x^2=1\Leftrightarrow x=\frac{1}{4}\left(x>0\right)\)

Vậy \(Min_B=\frac{1+1+1}{\frac{1}{2}}=6\Leftrightarrow x=\frac{1}{4}.\)

Bình luận (0)
TA
Xem chi tiết
PB
2 tháng 11 2019 lúc 18:27

1.

Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)

Áp dụng bất đẳng thức Côsi cho 2 số dương

\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)

\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)

Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)

2.

\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)

Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5

\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)

Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
SS
Xem chi tiết
CM
19 tháng 8 2019 lúc 12:05

\(A=\frac{16x}{3-x}+\frac{3}{x}+1=\frac{16x}{3-x}+\frac{3-x}{x}+2\ge8+2=10\)

Dau '=' xay ra khi \(x=\frac{3}{5}\)

Vay \(A_{min}=10\)khi \(x=\frac{3}{5}\)

Bình luận (0)
H24
Xem chi tiết
LS
Xem chi tiết
LD
Xem chi tiết
NQ
14 tháng 11 2017 lúc 22:24

a, N = 2 + 6/x^2-8x+22

Có : x^2-8x+22 = (x-4)^2 + 6 >= 6 => 6/x^2-8x+22 <= 6/6 = 1 => N <= 2+1=3

Dấu "=" xảy ra <=> x-4 = 0 <=> x=4

Vậy Max N =3 <=> x=4

k mk nha

Bình luận (0)
LD
14 tháng 11 2017 lúc 22:31

Cảm ơn bạn đã giúp mink nhưng bạn làm kiểu thế mink ko hiểu. Mong bạn sửa lại !

Bình luận (0)
ML
Xem chi tiết
TT
Xem chi tiết