Phân tích thành nhân tử:
B= (a+b-2c)3 +(b+c-2a)3+(c+a-2b)3
phân tích thành nhân tử:
a) \(27\left(a+b+c\right)^3\left(2a+3b-2c\right)^3-\left(2b+3c-2a\right)^3-\left(2c+3a-2b\right)^3\)
b)\(8\left(a+b+c\right)^3-\left(2a+b-c\right)^3-\left(2b+c-a\right)^3-\left(2c+a-b\right)^3\)
làm nhanh hộ mình. cảm ơn trước
Phân tích thành nhân tử: (a+b-2c)3 + (b+c-2a)3 + (c+a - 2b)3
phân tích thành nhân tử
A=8(a+b+c)3-(2a+b-c)3-(2b+c-a)3-(2c+a-b)3
phân tích các đa thức sau thành nhân tử:
a,A=(a-b)^3+(b-c)^3+(c-a)^3
b,B=(a+b-2c)^3+(b+c-2a)^3+(c+a-2b)^3
a) \(A=\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)
\(=a^3-3a^2b+3ab^2-b^3+b^3-3b^2c+3bc^2-c^2+c^3-3c^2a+3ca^2-a^3\)
\(=\left(a^3-a^3\right)+\left(-b^3+b^3\right)+\left(-c^3+c^3\right)-3\left(a^2b+ac^2-ab^2-bc^2+b^2c-a^2c\right)\)
\(=3[\left(a^2b-ab^2\right)+\left(ac^2-b^2c\right)-\left(a^2c-b^2c\right)]\)
\(=3[ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a^2-b^2\right)]\)
\(=3[ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)]\)
\(=3\left(a-b\right)[\left(a+b+c^2-c\left(a+b\right)\right)]\)
\(=3\left(a-b\right)\left(ab+c^2-ca-cb\right)\)
\(=3\left(a-b\right)[\left(ab-ac\right)+\left(c^2-cb\right)]\)
\(=3\left(a-b\right)[a\left(b-c\right)+c\left(c-b\right)]\)
\(=3\left(a-b\right)[a\left(b-c\right)-c\left(b-c\right)]\)
\(=3\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
b) \(B=\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)
Bạn tham khảo bài trong hình nhé. Nếu không thấy hình thì vào câu hỏi tương tự để xem.
Phân tích đa thức thành nhân tử :
\(B=\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)
Phân tích đa thức sau thành nhân tử :
\(B=\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)
\(B=\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)
\(=\left(a+b-2c+b+c-2a\right)\left[\left(a+b-2c\right)^2-\left(a+b-2c\right)\left(b+c-2a\right)+\left(b+c-2a\right)^2\right]+\left(c+a-2b\right)^3\)
\(=\left(c+a-2b\right)^3-\left(a-2b+c\right)\left[\left(a+b-2c\right)^2-\left(a+b-2c\right)\left(b+c-2a\right)+\left(b+c-2a\right)^2\right]\)
\(=\left(c+a-2b\right)\left[\left(c+a-2b\right)^2-\left(a+b-2c\right)^2+\left(a+b-2c\right)\left(b+c-2a\right)-\left(b+c-2a\right)^2\right]\)
\(=\left(c+a-2b\right)\left[\left(c+a-2b+a+b-2c\right)\left(c+a-2b-a-b+2c\right)+\left(a+b-2c\right)\left(b+c-2a\right)-\left(b+c-2a\right)^2\right]\)
\(=\left(c+a-2b\right)\left[\left(2a-b-c\right)\left(3c-3b\right)-\left(a+b-2c\right)\left(2a-b-c\right)-\left(b+c-2a\right)^2\right]\)
\(=\left(c+a-2b\right)\left[\left(2a-b-c\right)\left(3c-3b-a-b+2c\right)-\left(b+c-2a\right)^2\right]\)
\(=\left(c+a-2b\right)\left[\left(2a-b-c\right)\left(5c-a-4b\right)-\left(b+c-2a\right)^2\right]\)
\(=\left(c+a-2b\right)\left[\left(b+c-2a\right)\left(a+4b-5c\right)-\left(b+c-2a\right)^2\right]\)
\(=\left(c+a-2b\right)\left(b+c-2a\right)\left(a+4b-5c-b-c+2a\right)\)
\(=\left(c+a-2b\right)\left(b+c-2a\right)\left(3a+3b-6c\right)\)
\(=3\left(c+a-2b\right)\left(b+c-2a\right)\left(a+b-2c\right)\)
\(B=\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)
Đặt: \(a+b-2c=x;b+c-2a=y;c+a-2b=z\)
\(\Rightarrow B=x^3+y^3+z^3=\left(x+y+z\right)^3-3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Ta thấy: \(x+y+z=a+b-2c+b+c-2a+c+a-2b=0\)
\(x+y=a+b-2c+b+c-2a=2b-a-c\)
\(y+z=b+c-2a+c+a-2b=2c-a-b\)
\(z+x=c+a-2b+a+b-2c=2a-b-c\)
Thay vào B \(\Rightarrow B=0-3\left(2b-a-c\right)\left(2c-a-b\right)\left(2a-b-c\right)\)
Vậy \(B=-3\left(2b-a-a\right)\left(2c-a-b\right)\left(2a-b-c\right).\)
Phân tích đa thức sau thành nhân tử:
\(\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)
Phân tích thành nhân tử:
a/ \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2\)
b/ \(x^5-4x^3-5x\)
\(x^5-4x^3-5x\)
\(=x\left(x^4-4x^2-5\right)\)
\(=x\left(x^4-5x^2+x^2-5\right)\)
\(=x\left[x^2\left(x^2-5\right)+\left(x^2-5\right)\right]\)
\(=x\left(x^2+1\right)\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)\)
a/
\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2.\)
=>\(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2-2\left(ac\right)^2\)
=>\(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ac\right)^2-4\left(ca\right)^2\)
áp dụng hằng đẳng thức \(a^2-b^2-c^2=a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ac\right)^2\) ta đc
\(\left(a^2-b^2+c^2\right)-4\left(ac\right)^2\)
=> \(\left(a^2-b^2+c^2-2ac\right)\left(a^2-b^2+c^2+2ac\right)\)
\(x^5-4x^3-5x=x\left(x^4-4x^2-5\right)\)
Phân tích đa thức thành nhân tử:
A = \(8\left(a+b+c\right)^3-\left(2a+b-c\right)^3-\left(2b+c-a\right)^3-\left(2c+a-b\right)^3\)
\(3\left(a+3b\right)\left(b+3c\right)\left(c+3a\right)\)