Những câu hỏi liên quan
NH
Xem chi tiết
NA
Xem chi tiết
AT
Xem chi tiết
H24
14 tháng 8 2016 lúc 22:01

\(\hept{\begin{cases}2x^2+xy-y^2-5x+y+2=0\left(1\right)\\x^2+y^2+x+y-4=0\left(2\right)\end{cases}}\)
pt(1)\(\Leftrightarrow2x^2+2xy-4x-x-y+2-xy-y^2+2y=0\)
\(\Leftrightarrow2x\left(x+y-2\right)-\left(x+y-2\right)-y\left(x+y-2\right)=0\)
\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y-2=0\\2x-y-1=0\end{cases}}\)
Thế xuống pt 2 rồi giải 

Bình luận (0)
H24
Xem chi tiết
NQ
Xem chi tiết
KT
25 tháng 2 2020 lúc 16:56

1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)

Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.

Bình luận (0)
 Khách vãng lai đã xóa
MD
Xem chi tiết
TL
8 tháng 5 2020 lúc 19:31

\(\hept{\begin{cases}2x^2+xy-y^2-5x+y+2=0\\x^2+y^2+x+y-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}y^2-\left(x+1\right)y-2x^2+5x-2=0\\x^2+y^2+x+y-4=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(y+x-2\right)\left(y-2x+1\right)=0\\x^2+y^2+x+y-4=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+x-2=0\\x^2+y^2+x+y-4=0\end{cases}}\)hoặc \(\hept{\begin{cases}y-2x+1=0\\x^2+y^2+x+y-4=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}x=\frac{-4}{5}\\y=\frac{-13}{5}\end{cases}}\)và \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)

Vậy hpt có 2 nghiệm (x;y)=\(\left(1;1\right);\left(\frac{-4}{5};\frac{-13}{5}\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
8 tháng 5 2020 lúc 19:32

ffffffffffffffffffff

Bình luận (0)
 Khách vãng lai đã xóa
MX
Xem chi tiết
KN
14 tháng 5 2020 lúc 19:56

Ta xét hệ \(\hept{\begin{cases}2x^2+xy-y^2-5x+y+2=0\left(1\right)\\x^2+y^2+x+y-4=0\left(2\right)\end{cases}}\)

Ta có: \(\left(1\right)\Leftrightarrow y^2-\left(x+1\right)y-2x^2+5x-2=0\)

\(\Leftrightarrow\left[y-\frac{x+1}{2}\right]^2-\left[\frac{\left(x+1\right)^2}{4}+2x^2-5x+2\right]=0\)

\(\Leftrightarrow\left[y-\frac{x+1}{2}\right]^2-\frac{9x^2-18x+9}{4}=0\)\(\Leftrightarrow\left[y-\frac{x+1}{2}\right]^2-\left(\frac{3x-3}{2}\right)^2=0\)

\(\Leftrightarrow\left(y-\frac{x+1}{2}-\frac{3x-3}{2}\right)\left(y-\frac{x+1}{2}+\frac{3x-3}{2}\right)=0\)\(\Leftrightarrow\left(y-2x+1\right)\left(y+x-2\right)=0\Leftrightarrow\orbr{\begin{cases}y-2x+1=0\\y+x-2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}y=2x-1\\y=2-x\end{cases}}\)

TH1: \(y=2x-1\), thay vào phương trình (2), ta được: \(x^2+\left(2x-1\right)^2+x+2x-1-4=0\)

\(\Leftrightarrow5x^2-x-4=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\\x=-\frac{4}{5}\Rightarrow y=\frac{-13}{5}\end{cases}}\)

TH2: \(y=2-x\), thay vào phương trình (2), ta được: \(x^2+\left(2-x\right)^2+x+2-x-4=0\)

\(\Leftrightarrow2x^2-4x+2=0\Leftrightarrow2\left(x-1\right)^2=0\Leftrightarrow x=1\Rightarrow y=1\)

Vậy hệ có 2 nghiệm \(\left(x;y\right)\in\left\{\left(1;1\right);\left(-\frac{4}{5};-\frac{13}{5}\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
OI

\(+,2x^2+xy-y^2-5x+y+2=0\)

\(\Leftrightarrow x^2+\frac{xy}{2}-\frac{y^2}{2}-\frac{5x}{2}+\frac{y}{2}+1=0\)

\(\Leftrightarrow x^2+x\left(\frac{y}{2}-\frac{5}{2}\right)-\frac{y^2}{2}+\frac{y}{2}+1=0\)

\(\Leftrightarrow x^2+2x.\frac{y-5}{4}+\left(\frac{y-5}{4}\right)^2-\left(\frac{y-5}{4}\right)^2-\frac{y^2}{2}+\frac{y}{2}+1=0\)

\(\Leftrightarrow\left(x+\frac{y-5}{4}\right)^2-\frac{y^2-10y+25}{16}-\frac{y^2}{2}+\frac{y}{2}+1=0\)

\(\Leftrightarrow\left(x+\frac{y-5}{4}\right)^2-\frac{9y^2-18y+9}{16}=0\)

\(\Leftrightarrow\left(x+\frac{y-5}{4}\right)^2-\left(\frac{3y-3}{4}\right)^2=0\)

\(\Leftrightarrow\left(x+\frac{y-5}{4}-\frac{3y-3}{4}\right)\left(x+\frac{y-5}{4}+\frac{3y-3}{4}\right)=0\)

\(\Leftrightarrow\left(x+\frac{-y-1}{2}\right)\left(x+y+2\right)=0\)

\(\orbr{\begin{cases}x=\frac{y+1}{2}\\x=-y-2\end{cases}}\)

vậy ....

Bình luận (0)
 Khách vãng lai đã xóa
TL
14 tháng 5 2020 lúc 20:20

\(\hept{\begin{cases}2x^2+xy-y^2-5x+y+2=0\left(1\right)\\x^2+y^2+x+y-4=0\left(2\right)\end{cases}}\)

PT (1) \(\Leftrightarrow2x^2+\left(5y-5\right)x-y^2+y+2=0\)

\(\Delta=\left(y-5\right)^2-8\left(-y^2+y+2\right)\)

\(=y^2-10y+25+8y^2-8y-16\)

\(=9y^2-18y+9\)

\(=\left(3y-3\right)^2\Rightarrow\sqrt{\Delta}=\left|3y-3\right|\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{5-y+3y-3}{4}=\frac{2+2y}{4}=\frac{1+y}{2}\\x=\frac{5-y-3y+3}{4}=\frac{8-4y}{4}=2-y\end{cases}}\)

*) TH1: \(2x=1+y\)

=> y=-1+2x thay vào hệ phương trình (2) \(x^2+\left(2x-1\right)^2+x+2x-1-4=0\)

\(\Leftrightarrow x^2+4x^2-4x+1+3x-5=0\)

\(\Leftrightarrow5x^2-x-4=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-4}{5}\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)và \(\hept{\begin{cases}x=\frac{-4}{5}\\y=\frac{-13}{5}\end{cases}}\)

*) TH2: \(x=2-y\Rightarrow y=2-x\)

=> PT(2) \(x^2+\left(2-x\right)^2+x+2-x-4=0\)

\(\Leftrightarrow x^2+x^2-4x+4-2=0\)

\(\Leftrightarrow2x^2+4x+2=0\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

<=> x=1

\(\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

Vậy hệ có nghiệm \(\left(x;y\right)=\left(1;1\right);\left(\frac{-4}{5};\frac{-13}{5}\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
KN
9 tháng 2 2019 lúc 11:28

\(\hept{\begin{cases}2x^2+xy-y^2-5x+y+2=0\\x^2+y^2+x+y-4=0\end{cases}}\)

\(\Leftrightarrow2x^2+xy-y^2-5x+y+2=x^2+y^2+x+y-4\)

\(\Leftrightarrow x^2+xy-y^2-5x+y+2=y^2+x+y-4\)

\(\Leftrightarrow x^2+xy-y^2-5x+y=y^2+x+y-4-2\)

\(\Leftrightarrow x^2+xy-y^2-5x+y=y^2+x+y-6\)

\(\Leftrightarrow x^2+xy-y^2+y=y^2+x+y-6+5x\)

\(\Leftrightarrow x^2+xy-y^2+y=y^2+6x+y-6\)

\(\Leftrightarrow x^2+xy-y^2=y^2+6x-6\)

\(\Leftrightarrow x^2+xy=y^2+6x-6+y^2\)

\(\Leftrightarrow x^2+xy=2y^2+6x-6\)

\(\Leftrightarrow x\left(x+y\right)=2\left(y^2+3x-3\right)\)

Bình luận (0)
PA
Xem chi tiết
H24
3 tháng 7 2016 lúc 9:54

Tổng hợp hệ pt

Bình luận (0)