Chứng minh : abc - ( a + b + c ) chia hết cho 9
Mình đố các bạn : chứng minh rằng số có dạng abc - (a+b+c) chia hết cho 9
(kéo xuống để coi đáp án)
đáp án là : abc - (a+b+c) = 100a +10b + c -(a+b+c)=99a +9b mà 99 và 9 đều chia hết cho 9 nên 99a + 9b chia hết cho 9 hay abc - (a+b+c)
\(\overline{abc}-\left(a+b+c\right)=100a+10b+c-a-b-c=99a+9b=9\left(11a+b\right)⋮9\)
Bài 1: Cho biết số abc chia hết cho 7 . Chứng minh rằng 2.a + 3.b + c chia hết cho 7
Bài 2 :Biết a+b chia hết cho 7 .Chứng minh rằng aba chia hết cho 7
Bài 3 :Chứng minh rằng : 9. 10n + 18 chia hết cho 27
Bài 4: Biết a+b+c chia hết cho 7 . Chứng minh rằng : nếu abc chia hết cho 7 thì b=c
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
Đang định hỏi thì ....
Chứng minh:
2 × abc chia hết cho 18, biết a+b+c chia hết cho 9
Vì ( a + b + c ) \(⋮\)9 nên abc \(⋮\)9
Mà 9 x 2 = 18 \(⋮\)18
=> 2 x abc \(⋮\)18 ( đpcm )
chứng minh rằng a) \(\overline{abcabc}\) chia hết cho 7, 11, 13
b) \(\overline{ab}-\overline{ba}\) chia hết cho 9
c) \(\overline{abc}-\overline{cba}\) chia hết cho 99
a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)
b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)
c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)
( abc + deg) chia hết cho 9 chứng minh:( a+b+c+d+e+g) chia hết cho 9
xin các bạn giải giúp mình bài toán
Ta có:abc+deg=100a+10b+c+100d+10e+g
=99a+a+9b+b+c+99d+d+9e+e+g
=(99a+9b+99d+9e)+(a+b+c+d+e+g)
=9(11a+b+11d+e)+(a+b+c+d+e+g)
Vì abc+deg chia hết cho 9 mà 9(11a+b+11d+e) chia hết cho 9 nên (a+b+c+d+e+g) chia hết cho 9
Vậy abc+deg chia hết cho 9 thì (a+b+c+d+e+g) chia hết cho 9
abc + deg = 100a + 10b + c + 100d + 10e + g
= 100(a + d) + 10(b + e) + (c + g)
= 99(a + d) + 9(b + e) + (a + b + c + d + e + g) chia hết cho 9
Mà 99(a + d) chia hết cho 9
9(b + e) chia hết cho 9
Vậy a + b + c + d + e + g chia hết cho 9
Chứng minh rằng :
a/ Biết a+b chia hết cho 7.Chứng minh rằng aba chia hết cho 7
b/ Biết a+b+c chia hết cho 7.Chứng minh rằng nếu abc chia hết cho 7 thì b-c chia hết cho 7
a/
\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)
\(=\left(98a+7b\right)+3\left(a+b\right)\)
\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)
\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)
b/ xem lại đề bài
Cho a, b, c thuộc Z, a3+b3+c3 chia hết cho 9
Chứng minh rằng abc chia hết cho 3
abc chia hết cho 3 => 1 trong 3 số a,b,c chia hết cho 3 (chứng minh = phản chứng nhé)
Giả sử 1 trong 3 số k có số nào chia hết cho 3:
=> a=3m+1; b=3p+1; c=3n+1
Rồi suy ra a^3 +b^3 +c^3 bằng gì đó k chia hết cho 9 (làm biếng quá nên ghi z) => điều giả sử k đúng
=> 1 trong 3 số a,b,c có ít nhất 1 số chia hết cho 3 hay abc chia hết cho 3